跳到主要內容

簡易檢索 / 詳目顯示

研究生: 王詩婷
Shi-Ting Wang
論文名稱: 利用投影法做系統的強健性分析與設計
The robustness analysis and design of uncertain system:utilizing projection method
指導教授: 莊堯棠
Yau-Tarng Juang
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
畢業學年度: 90
語文別: 英文
論文頁數: 54
中文關鍵詞: 投影法強健穩定控制器設計
外文關鍵詞: projection method, robust stability, cotroller design
相關次數: 點閱:14下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,主要是針對具參數不確定的系統,做一個有系統的分析研究。由於在實際的環境中,不管儀器再精密或是情況再理想,一定有不可避免的干擾或是參數變動的問題。所以,這些不確定變數的強健穩定,是一個良好系統所不可或缺的。
    擾動的來源主要是由於下述幾種原因:系統的非線性關係,為了簡單起見而簡化原來較複雜的系統所帶來的誤差問題、系統參數的變動、周遭客觀環境的改變、不可避免的資料誤差等等都是可能的擾動原因。
    本文在擾動系統穩定度分析中,主要採用李亞普諾夫(Lyapunov) 的穩定定理為中心基礎,提出投影法來改善先前文獻用線性矩陣不等式去解擾動系統穩定性分析的保守度,並把問題做延伸去分析將不確定系統極點指定在某一特定區域內的強健穩定性,最後利用投影法提出一有系統的設計程序,對擾動系統做迴授控制器設計,使我們能更確認系統的穩定度。
    本論文的研究主要就是利用投影法對上述的狀況做一較完整的分析與設計。我們期望能夠得到一個較佳的穩定準則及較精確的條件,並設計控制器增加系統的穩定度。


    To keep a system working stability and sability including realistic conditions has become a very important topic in the control fields.
    In this thesis, first we analyze the robustness stability of linear uncertain system. Then the stability issues can be extended to assign all eigenvalues of uncertain system lie in a prescribed region. We propose a simple scheme, projection method, to analyze the robustness stability of uncertain systems and pole assignment. And further derive a systematic design method to find a state feedback controller such that the perturbed closed-loop system is stable.

    CONTENTS CHAPTER 1 Introduction …………………………………………………1 1.1 Motivation …………………………………………………1 1.2 Literature survey …………………………………………………2 1.3 Organization of this thesis …………………………………………………2 CHAPTER 2 The projection scheme introduction ………………………………4 2.1 Introduction …………………………………………………4 2.2 The arising issues form LMI method …………………………………………4 2.3 The concept of the projection scheme ……………………………………6 2.4 The related projection operators ………………………………………7 2.5 Conclusions ………………………………13 CHAPTER 3 Robust stability analysis and pole assignment for uncertain systems ………14 3.1 Introduction …………………………………………………14 3.2 Stability robustness analysis …………………………………………………14 3.3 Robust pole assignment of linear uncertain system …………………………15 3.4 Robustness analysis algorithm …………………………………………………17 3.5 Examples …………………………………………………18 3.6 Conclusions …………………………………………………22 CHAPTER 4 Design of feedback controller for uncertain system ……………23 4.1 Introduction …………………………………………………23 4.2 Problem formulation ………………………………………23 4.3 The design algorithm ………………………………………27 4.4 Examples ……………………………………………28 4.5 Conclusions …………………………………………………35 CHAPTER 5 Conclusions …………………………………………………36 List of Figures Fig. 2.1 The pole assign Region ………………………………………… 5 Fig. 2.2 The conservatism of LMI solver ………………………………………… 6 Fig. 3.1 Pole assignment in the plane …………………………………………16 Fig. 3.2 The pole assignment in the desire region …………………………… 20 Fig. 3.3 The pole assignment in the region ………………………………………… 22 Fig. 4.1 The pole assignment with decay rate ………………………………………… 25 Fig. 4.2 The poles of closed-loop are lied in the region …………………………29 Fig. 4.3 The poles of closed-loop are lied in left half plane …………………… 31 Fig. 4.4 The pole assignment with decay rate ……………………………………………33 Fig. 4.5 The pole assignment with decay rate ……………………………………………35

    Reference
    [1] Y. K. Foo and Y.C. Soh, “Stability analysis of a family of matrices,”
    IEEE Trans. Automat. Control., vol. 35, no. 11, PP. 1257-1259, 1990.
    [2] Y. T. Juang, “Robust stability and robust pole assignment of linear
    systems with structured uncertainty,” IEEE Trans. Automat. Control., vol.
    36, no. 5, PP. 635-637, 1991.
    [3] Y. T. Juang, T. S. Kuo and C. F. Hsu, “New approach to time-domain
    analysis for stability robustness of dynamic systems,” Internation Journal
    System Science , vol. 18, pp.1363-1376, 1987.
    [4] C. H. Lee, ”Upper and lower matrix bounds of the solutions for continuous
    and discrete Lyapunov equation,” Franklin Institute, vol.334B, no.4,
    pp539-546, 1997.
    [5] Y. T. Juang and C. M. Lai, “Performance bounds of linear discrete-time
    optimal systems with structured perturbations,” Journal of control systems
    and technology, vol. 4, No. 4, pp.289-294, 1996.
    [6] P. Jiang, H. Su and J. Chu, “LMI approach to optimal guaranteed cost
    control for a class of linear uncertain discrete systems,” AACC, 2000.
    [7] T. Mori, “Estimates for a measure of stability robustness via a Lyapunov
    matrix equation,” Int. J. Control, vol. 49, no. 3, pp 921-927, 1989.
    [8] S. N. Huang and W. Ren, “New results on the robust bounds of linear
    uncertain systems,” International Journal of Systems Science,vol.28, no.2,
    pp141-144, 1997.
    [9] J. C. Lee, E. A. Misawa and K. N. Reid,” Asymmetric robustness measure of
    engenvalue distribution for uncertain linear systems with structured
    perturbations,” AACC, pp3950-3954, 1997
    [10] Y. T. Juang and S. L. Tung and T. C. Ho, “Correspondence sufficient
    condition for asymptotic stability of discrete interval systems,”
    International Journal Control , vol. 49, no. 5, PP. 1799-1803, 1989.
    [11] Y. T. Juang, Z. C. Hong and Y. T. Wang, “Pole-assignment for uncertain
    systems with structured perturbations,” IEEE Trans. Circuits and systems,
    vol. 37, no. 1, pp.107-110, 1990.
    [12] Y. T. Juang, T. C. Yu, “Robust pole-assignment for structured
    perturbation systems,” Control theory and advanced technology, vol. 6, no.
    3, pp.451-461, 1990.
    [13] Y. T. Juang and Z. C. Hong and Y. T. Wang, “Robustness of pole assignment
    in a specified region,” IEEE Trans. Automat. Control., vol. 34, no. 7,
    PP. 751-758, 1989.
    [14] Z. Gao and P. A. Antsaklis, “Explicit asymmetric bounds for robust
    stability of continuous and discrete-time systems,” IEEE Trans. Automat.
    Control., vol. 38, no. 2, pp.332-335, 1993.
    [15] S. N. Huang, J. X. Qian and H. H. Shao, ”Robustness bounds for continuous
    systems with LQ regulators,” IEE,1995.
    [16] A. Xue and L. Yu, “Robustness analysis for the uncertain systems with
    guaranteed cost design,” IEEE, 2000.
    [17] A. K. Xue, X. Q. Xiong and Y. X. Sun, “Robust bounds on unstructured and
    structured uncertain systems with optimal guaranteed cost design,” IEEE,
    1999.
    [18] A. Xue and Y. Sun, “Robustness analysis of uncertain linear systems with
    guaranteed cost control,” AACC, 1999.
    [19] J. H. Su and I. K. Fong, “Robust stability analysis of linear
    continuous / discrete-time systems with output feedback controllers,” IEEE
    Trans. Automat. Control., vol. 38, no. 7, PP. 1154-1158, 1993.
    [20] Y-H Chang, ”Robust regional stability analysis of continuous time-delay
    systems,“ IEE proc-Control Theory Appl, vol.146, no4, 1999.
    [21] T. Mori and H. Kokame, “Stability of ,” IEEE, 1989.
    [22] P. L. Liu and T. J. Su, ”Robust stability of interval time-delay systems
    with delay-dependence,” Systems Control Letters, vol.33, pp231-239, 1998.
    [23] J. S Luo and A. Johnson, “Stability robustness bounds for linear
    uncertain systems- a frequency domain approach,” IEEE,1992.
    [24] M. Chilali and P. Gahinet, “ Design with pole placement constraints: An
    LMI approach” IEEE Trans. Automat. Contr., vol.41, no. 3, pp.358-367, 1996.
    [25] M. Chilali, P. Gahinet and P. Apkarian, “Robust pole placement in LMI
    regions” IEEE Trans. Automat. Contr., vol.44, no. 12, pp.2257-2270, 1999
    [26] T. Mori, Y. Mori and H. Kokame, “Common Lyapunov function approach to
    matrix root clustering,” Systems Control Letters, vol.44, pp73-78, 2001.
    [27] M. C. de Oliveira, J. Bernussou, J. C. Geromel, “A new discrete-time
    robust stability condition,” Systems Control Letters, vol.37, pp261-265,
    1999.
    [28] J. Daafouz, J. Bernussou, “Parameter dependent Lyapunov functions for
    discrete time systems with time varying parametric uncertainties,” Systems
    Control Letters, vol.43, pp355-359, 2001.
    [29] C. W. Ramos, L. D. Peres, “A less conservative LMI condition for the
    robust stability of discrete-time uncertain systems,” Systems Control
    Letters, vol.43, pp371-378, 2001.
    [30] C. W. Ramos, L. D. Peres, “An LMI approach to compute robust stability
    domains for uncertain linear systems,” AACC, pp4073-4078, 2001.
    [31] C. W. Ramos, L. D. Peres, “An LMI condition for the robust stability of
    uncertain continuous-time linear systems,” IEEE Trans. Automat. Control.,
    vol. 47, no. 4, PP. 675-678, 2002..
    [32] C. Marsh and H. Wei, “Robustness bounds for systems with parametric
    uncertainty,” Automatica, vol. 32, no. 10, pp1447-1453, 1996.
    [33] K. M. Grigoriadis and R. E. Skelton, ”Low-order control design for LMI
    problems using alternating projection methods,” Automatica., vol. 32, no.
    8, pp1117-1125, 1996.
    [34] C. Brezinski,” Projection methods for linear systems,” Journal of
    computational and applied mathematics, vol.77, pp35-51, 1997.
    [35] S. Boyd and L. T. Ghaoui, E. Feron and V. Balakrishnan,“ Linear matrix
    inequalities in systems and control theory,” SIAM, Philadelphia, 1994.
    [36] L. G. Gubin, B. T. Polyak and E. V. Raik,” The method of projections for
    finding common point of convex sets,” USSR Comp. Math. Phys, 7, pp1-24,
    1967.
    [37] N. J. Higham,” Computing the nearest symmetric positive semidefinite
    matrix,” Linear Algebra and its Applications, 103, pp 103-118, 1988.
    [38] J. Douglas and M. Athans,” Robust linear quadratic designs with real
    parameter uncertainty,” IEEE Transactions on Automatic Control, vol. 39,
    pp107-111, 1994.
    [39] K. Furuta and S. B. Kim,” Pole assignment in a specified disk,” IEEE
    Transactions on Automatic Control, vol. 32, pp423-427, 1987.
    [40] L. H. Keel, S. P. Bhattacharyya and Jo. W. howze,” Robust control with
    structured perturbations,” IEEE Transactions on Automatic Control, vol.
    33, pp68-78, 1988.
    [41] M. A. Leal and J. S. Gibson,” A first-order Lyapunov robustness method
    for linear systems with uncertain parameters,” IEEE Transactions on
    Automatic Control, vol. 35, pp1068-1070, 1990.
    [42] Y. Nesterov and A. Nemirovsky,” Interior-point polynomial methods in
    convex programming,” Studies in Applied Mathematics (SIAM.), Philadelphia,
    1994.
    [43] A. T. Neto, J. M. Dion and L. Dugard,” Robustness bounds for LQ
    regulators,” IEEE Transactions on Automatic Control, vol. 37, pp1373-1377,
    1992.
    [44] M. E. Sezer and D. D. Siljak,” A note on robust stability bounds,” IEEE
    Transactions on Automatic Control, vol. 34, pp1212-1215, 1989.
    [45] K. M. Sobel, S. S. Banda and J. H. Yeh,” Robust control for linear
    systems with structured state space uncertainty,” International Journal of
    Control, vol. 50, pp1991-2004, 1989.
    [46] M. K. Solak and A. C. Peng,” A note on robust pole placement,” IEEE
    Transactions on Automatic Control, vol. 40, pp181-184, 1995.
    [47] R. K. Yedavalli,” Improved measures of stability robustness for linear
    state space medels,” IEEE Transactions on Automatic Control, vol. 30,
    pp577-579, 1999.
    [48] R. K. Yedavalli and Z. Liang,” Reduces conservatism in stability
    robustness bounds by state transformation,” IEEE Transactions on Automatic
    Control, vol. 31, pp863-866, 1986.
    [49] R. A. Horn and C. R. Jhnson, “Matrix analysis,” Cambridge: Cambridge
    Univ. press, 1985.
    [50] 林俊良,強健控制系統分析與設計,國立編譯館,1997.
    [51] 林傳生,MATLAB之使用與應用,儒林出版社,1997.
    [52] 張智星,MATLAB程式設計與應用,清蔚科技出版事業部,2000.

    QR CODE
    :::