跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳玉秀
Tran Ngoc Tu
論文名稱: The relationship of kaolinite friction characteristics and temperature changing in submerged conditions
指導教授: 董家鈞
Jia-Jyun Dong
口試委員:
學位類別: 碩士
Master
系所名稱: 地球科學學院 - 應用地質研究所
Graduate Institute of Applied Geology
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 86
中文關鍵詞: 旋轉剪切試驗高嶺土速度相依性
外文關鍵詞: Rotary shear test, kaolinite, velocity dependency
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    過往研究表明,滑移速度會顯著影響滑山崩滑移帶的強度,而且水對滑
    移帶的影響也被認為是一個關鍵因素。然而,關於此影響的文獻討論仍不足
    夠,且仍在爭論之中。為了更深入地研究滑移速度和排水條件對山崩滑移帶
    強度的影響,本研究以在正向應力為 1 MPa 及較大滑移速度範圍(從 10-7
    m/s
    到 1 m/s)的實驗條件對純高嶺土上進行了一系列旋剪試驗。在徑向排水條件
    下,將試體夾在兩個不透水的圍岩之間以鐵氟龍環包覆,然後將其放入浸水
    容器中。本研究還評估了浸水條件下摩擦特性與溫度變化之間的相關性。結
    果表明,穩態摩擦係數在滑移速度從 10-7
    m/s 到 10-5
    m/s 時到達 0.2,然後在
    10-4
    m/s 時略微上升到 0.26、在 10-3
    m/s 時上升到 0.3、並在 10-2
    m/s 時到達 0.4、
    接下來在 10-1
    m/s 下降至 0.3。而在 1 m/s 的實驗條件下摩擦係數為滑移弱化
    且穩態摩擦係數等於 0.14,這顯示了在浸水條件下之結果不同於先前研究的
    氣乾且飽和條件下的實驗結果。另外在實驗過程中的溫度紀錄為在低滑移速
    度(從 10-7
    m/s 到 10-3
    m/s)下保持在攝氏 25 – 26 度左右,然後在 10-2
    m/s 時
    逐漸增加到攝氏 32 度,接下來在 10-1
    m/s 的速度顯著地升至攝氏 60 度,最後
    以 1 m/s 的速度升至攝氏 75 度。然而,這項研究表明了高嶺土的線性熱膨脹
    是在剪切過程產生的,與軸向位移的變化無關。
    關鍵詞:旋轉剪切試驗、高嶺土、速度相依性、排水條件、溫度測量。


    ABSTRACT
    Researches have suggested that slip rates can significantly influence the
    strength of the slip zones of landslides, and the effect of water on the slip zones is
    also proposed as a crucial factor. Nevertheless, efficient reports on this process
    are still limited and are continue being debated. In order to dig deeper into the
    roles of slip rate and drainage condition on the strength of the slip zones of the
    landslides, a series of rotary shear tests were conducted on a wide range of shear
    velocity (from 10-7
    to 1 m/s) with normal stress of 1 MPa on kaolinite clay. For
    the control of radial drainage condition, samples were sandwiched by two
    impermeable-holders and covered by a Teflon ring. The system then being
    submerged into water tank. This research also assesses the correlation between
    the friction characteristics and the temperature changes in the submerged
    condition. The results illustrated that the steady-state friction coefficient reached
    0.2 at a slip rate from 10-7 m/s to 10-5 m/s and followed by a slightly raised to 0.26
    at 10-4 m/s, 0.3 at 10-3 m/s, and reached 0.4 at 10-2 m/s before dropping to 0.3 at
    10-1
    . The friction coefficient at 1 m/s shown the slip-weakening behavior with
    steady-state friction equal 0.14, indicated that the submerged condition is different
    to the dry and saturated conditions from previous studies. Temperature
    measurement results during the tests were maintained at around 25 – 26 degrees
    Celsius at a low slip rate (from 10-7 m/s to 10-3 m/s), then gradually increased to
    32 degrees Celsius at 10-2 m/s, and significantly raised to 60 degrees Celsius at
    10-1 m/s and 75 degrees Celsius at 1 m/s. However, this study proved that the
    linear thermal expansion of kaolinite clay had been created by the shearing
    process, not related to the changing of axial displacement.
    Keywords: Rotary shear test, kaolinite, velocity dependency, drainage
    condition, temperature measurement.

    TABLE OF CONTENTS ABSTRACT................................................................................................................i ACKNOWLEDGEMENTS .....................................................................................ii LIST OF FIGURES.................................................................................................. v LIST OF NOTATIONS...........................................................................................ix CHAPTER I: INTRODUCTION............................................................................ 1 1.1. Motivation and purpose .............................................................................. 1 1.2. Flow chart of this study ............................................................................... 4 CHAPTER 2: LITERATURE REVIEW ............................................................... 6 2.1. The friction coefficient in rotary shear tests ............................................. 6 2.2. Velocity – displacement dependent friction law ....................................... 7 2.3. Teflon ring affects the friction coefficient ................................................. 9 2.4. Temperature changing in shear tests......................................................... 9 CHAPTER 3: METHODOLOGY ........................................................................ 10 3.1. Low- to high-velocity rotary-shear friction apparatus .......................... 10 3.2. Samples preparation.................................................................................. 14 3.2.1. Testing material ......................................................................................... 14 3.2.2. Holders........................................................................................................ 14 3.2.3. The Teflon rings friction coefficient......................................................... 14 3.2.4. Thermocouple............................................................................................. 15 3.3. Testing program......................................................................................... 16 3.3.1. Consolidation stage .................................................................................... 16 3.3.2. Shearing stage............................................................................................. 16 3.3.3. Calculating temperature ........................................................................... 16 3.3.4. How to evaluate thermo-expansion.......................................................... 17 3.3.5. The steady-state friction coefficient ......................................................... 18 iv CHAPTER 4: RESULTS ....................................................................................... 21 4.1. Consolidation stage .................................................................................... 21 4.2. Shearing stage............................................................................................. 23 4.2.1. Teflon correction........................................................................................ 23 4.2.2. Friction coefficient, axial displacement, and temperature versus slip displacement............................................................................................................ 25 4.2.3. Velocity-dependent steady-state friction coefficient............................... 39 4.2.4. Temperature changing during the shear tests........................................ 40 CHAPTER 5: DISCUSSION................................................................................. 42 5.1. Classification of friction coefficient versus shear displacement curves 42 5.2. Dilation during shear................................................................................. 43 5.3. Repeatability of testing results.................................................................. 45 5.4. Temperature calculation and measurement ........................................... 48 5.5. Steady-state friction coefficient compare with previous studies........... 49 CHAPTER 6: CONCLUSIONS ............................................................................ 52 REFERENCES........................................................................................................ 54 APPENDIX.............................................................................................................. 61

    REFERENCES
    [1] Alonso, E.E., Pinyol, N.M., 2010. Criteria for rapid sliding: A review of
    Vajont case. Engineering Geology, Vol 114, No. 3–4, pp. 198–210.
    [2] Alonso, E.E., Zervos, A., Pinyol, N.M., 2016. Thermo-poro-mechanical
    analysis of landslides: From creeping behavior to catastrophic failure.
    Geotechnique, Vol 66, No. 3, pp. 202-219.
    [3] Beeler, N.M., Tullis, T.E., Goldsby, D.L., 2008. Constitutive relationships
    and physical basis of fault strength due to flash heating. Journal of
    Geophysical Research, Vol 113, B01401.
    [4] Bhat, D.R., Bhandari, N.P., Yatabe, R., 2013. Method of residual-state creep
    test to understand the creeping behaviour of landslide soils. Landslide
    Science and Practice, Vol 2, pp. 635-642.
    [5] Brahim, K.B., Zaoui, A., Anatoly, B.B., 2013. Determination of the melting
    temperature of kaolinite by means of the Z-method. American
    Mineralogist, Vol 98, No. 10, pp. 1881–1885.
    [6] Brantut, N., Schubnel, A., Rouzaud, J.N., Brunet, F., Shimamoto, T., 2008.
    High-velocity frictional properties of a clay-bearing fault gouge and
    implications for earthquake mechanics. Journal of Geophysical Research,
    Vol 113, B10401.
    [7] Buijze, L., Niemeijer, A.R., Han, R., Shimamoto, T., Spiers, C.J., 2017.
    Friction properties and deformation mechanisms of halite(‐mica) gouges
    from low to high sliding velocities. Earth and Planetary Science Letters,
    Vol 458, pp. 107–119.
    [8] Chen, J., Niemeijer, A., Yao, L., Ma, S., 2017. Water vaporization promotes
    coseismic fluid pressurization and buffers temperature rise. Geophysical
    Research Letters, Vol 44, pp. 2177-2185.
    55
    [9] Faulkner, D.R., Mitchell, T.M., Behnsen, J., Hirose, T., Shimamoto, T. Stuck
    in the mud? Earthquake nucleation and propagation 1646 through
    accretionary forearms. Geophysical Research Letters, Vol 38, L18303.
    [10] Ferri, F., Toro, G.D., Hirose, T., Han, R., Noda, H., Shimamoto, T.,
    Quaresimin, M., Rossi, N.D., 2011. Low-to high-velocity frictional
    properties of the clay-rich gouges from the slipping zone of the 1963
    Vaiont slide, northern Italy. Journal of Geophysical Research, Vol 116,
    B09208.
    [11] Ferri, F., Toro, G.D., Hirose, T., Shimamoto, T., 2010. Evidence of thermal
    pressurization in high-velocity friction experiments on smectite-rich
    gouges. Terra Nova, Vol 22, No. 5, pp. 347-353.
    [12] Frost, R.L., Horváth, E., Makó, E., Kristof, J., 2004. Modification of low and
    high-defect kaolinite surfaces: implications for kaolinite mineral
    processing. Colloid and Interface Science, Vol 270, pp. 337–346.
    [13] Goldsby, D.L., Tullis, T.E., 2002. Low frictional strength of quartz rocks at
    subseismic slip rates. Geophysical Research Letters, Vol 29, No. 17, pp.
    1844.
    [14] Goren, L., Aharonov, E., 2007. Long runout landslides: The role of frictional
    heating and hydraulic diffusivity. Geophysical Research Letters, Vol 34,
    L07301.
    [15] Han, R., Shimamoto, T., Hirose, T., Ree, H.J., Ando, J., 2007. Ultralow
    friction of carbonate faults caused by thermal decomposition. Science,
    Vol 316, pp. 878–881.
    [16] Hendron, A.J., Patton, F.D., 1987. The Vaiont slide - a geotechnical analysis
    based on new geologic observations of the failure surface. Engineering
    Geology, Vol 24, No. 1-4, Vol 475-491.
    [17] Hirose, T., Bystricky, M., 2007. Extreme dynamic weakening of faults
    during dehydration by coseismic shear heating. Geophysical Research
    Letters, Vol 34, L14311.
    56
    [18] Hirose, T., Shimamoto, T., 2005. Growth of molten zone as a mechanism of
    slip weakening of simulated faults in gabbro during frictional melting.
    Geophysical Research, Vol 110, B05202.
    [19] Hungr, O., Leroueil, S., Picarelli, L., 2014. The Varnes classification of
    landslide types, an update. Landslides, Vol 11, pp. 167–194.
    [20] Ikari, M.J., Saffer, D.M., Marone, C., 2007. Effect of hydration state on the
    frictional properties of montmorillonite-based fault gouge. Geophysical
    Research: Solid Earth, Vol 112, B06423.
    [21] Iverson, R.M., Richard, M., 2005. Regulation of landslide motion by
    dilatancy and pore pressure feedback. Geophysical Research, Vol 110,
    F02015.
    [22] Kim, J.W., Ree, J. H., Han, R., Shimamoto, T., 2010. Experimental evidence
    for the simultaneous formation of pseudotachylyte and mylonite in the
    brittle regime. Geology, Vol 38, pp. 1143-1146.
    [23] Lachenbruch, A.H., 1980. Frictional heating, fluid pressure, and the
    resistance to fault motion. Geophysical Research, Vol 85, pp. 6097–6122.
    [24] Lee, Y.W., 2017. Relationship of frictional characteristics of kaolin clay in
    different slip rates and drainage conditions, National Central University,
    Master thesis (in Chinese).
    [25] Mase, C.W., Smith, L., 1987. Effects of frictional heating on the thermal,
    hydrologic, and mechanical response of a fault. Geophysical Research:
    Solid Earth, Vol 92, pp. 6249–6272.
    [26] McConnell, J., Fleet, S., 1970. Electron Optical Study of the Thermal
    Decomposition of Kaolinite. Clay Minerals, Vol 8, No. 3, pp. 279-290.
    [27] McKenzie, D.P., Brune, J.N., 1972. Melting on fault planes during large
    earthquakes. Geophysical Journal of the Royal Astronomical Society, Vol
    29, pp. 65–78.
    [28] Mizoguchi, K., Hirose, T., Shimamoto, T., Fukuyama, E. 2007.
    Reconstruction of seismic faulting by high-velocity friction experiments:
    57
    an example of the 1995 Kobe earthquake. Geophysical Research Letters,
    Vol 34, L01308.
    [29] Mizoguchi, K., Hirose, T., Shimamoto, T., Fukuyama, E., 2006. Moisturerelated weakening and strengthening of a fault activated at seismic slip
    rates. Geophysical Research Letters, Vol 33, L16319.
    [30] Moore, D.E., Lockner, D.A., 2007. Friction of the smectite clay
    montmorillonite: A review and interpretation of data. The seismogenic
    zone of subduction thrust faults, pp. 317-345.
    [31] Morrow, C.A., Radney, B., Byerlee, J.D., 1992. Frictional strength and the
    effective pressure law of montmorillonite and illite clays. International
    Geophysics, Vol 51, pp. 69-88.
    [32] Niemeijer, A., Toro, G.D., Nielsen, S., Felice, F.D., 2011. Frictional melting
    of gabbro under extreme experimental conditions of normal stress,
    acceleration, and sliding velocity. Geophysical Research: Solid Earth, Vol
    116, B07404.
    [33] Noda, H., Shimamoto, T., 2005. Thermal pressurization and slip-weakening
    distance of a fault: an example of the Hanaore fault, southwest Japan.
    Bulletin of the Seismological Society of America, Vol 95, No. 4, pp.
    1224–1233.
    [34] Noda, H., Shimamoto, T., 2005. Thermal Pressurization and Slip-Weakening
    Distance of a Fault: An Example of the Hanaore Fault, Southwest Japan.
    Bulletin of the Seismological Society of America; Vol 95, No. 4, pp.
    1224–1233.
    [35] Nonveiller, E., 1992. Vaiont slide: influence of frictional heat on slip
    velocity. Proceedings of the meeting on the Vaiont 1963, pp. 187 – 197.
    [36] Oohashi, K., Hirose, T., Takahashi, M., Tanikawa, W., 2015. Dynamic
    weakening of smectite-bearing faults at intermediate velocities:
    implications for subduction zone earthquakes. Geophysical Research, Vol
    120, pp. 1572-1586.
    58
    [37] Paola, N.D., Holdsworth, R.E., Viti, C., Collettini, C., Bullock, R., 2015. Can
    grain size sensitive flow lubricate faults during the initial stages of
    earthquake propagation? Earth and Planetary Science Letters, Vol 431,
    pp. 48-58.
    [38] Petley, D.N., Allison, R.J., 1997. The mechanics of deep-seated landslides.
    Earth Surface Processes and Landforms: The Journal of the British
    Geomorphological Group, Vol 22, pp. 747-758.
    [39] Pham, Q.V., 2019. Velocity-dependent frictional properties of kaolinite clay
    under different drainage conditions with temperature measurement,
    National Central University, Master thesis.
    [40] Pinyol, N.M., Alvarado, M., Alonso, E.E., Zabala, F., 2017. Thermal effects
    in landslide mobility. Géotechnique, pp. 1-18.
    [41] Rao, V.V.S., Babu, G.L.S., 2016. Forensic Geotechnical Engineering.
    Springer Science and Business Media LLC, pp. 210.
    [42] Remitti, F., Smith, S.A.F.S., Mittempergher, Gualtieri, A.F., Toro, G.D.,
    2015. Frictional properties of fault zone gouges from the J‐FAST drilling
    project (Mw 9.0 2011 Tohoku‐Oki earthquake). Geophysical Research
    Letters, Vol 42, pp. 2691–2699.
    [43] Rice, J.R., 2006. Heating and weakening of faults during earthquake slip.
    Geophysical Research, Vol 111, B05311.
    [44] Sawai, M., Hirose, T., Kameda, J., 2014. Frictional properties of incoming
    pelagic sediments at the Japan Trench: Implications for large slip at a
    shallow plate boundary during the 2011 Tohoku earthquake. Earth Planets
    Space, Vol 66, No. 1, pp. 65.
    [45] Shimamoto, T., 1994. A new rotary‐shear high‐speed frictional testing
    machine: its basic design and scope of research. Jour. Tectonic Res.
    Group of Japan, Vol 39, pp. 65–78.
    59
    [46] Sibson, R.H., 1973. Interactions between temperature and pore fluid pressure
    during an earthquake faulting and a mechanism for partial or total stress
    relief. Nature Physical Science, Vol 243, pp. 66–68.
    [47] Tika, T.E., Hutchinson, J.N., 1999. Ring shear tests on soil from the Vaiont
    landslide slip surface. Geotechnique, Vol 49, pp. 59-74.
    [48] Togo, T., Ma, S.L., Hirose, T., 2009. High-velocity friction of faults: A
    review and implication for landslide studies. The Next Generation of
    Research on Earthquake-induced Landslides: An International
    Conference in Commemoration of 10th Anniversary of the Chi-Chi
    Earthquake, pp. 205-216.
    [49] Togo, T., Shimamoto, T., 2012. Energy partition for grain crushing in quartz
    gouge during subseismic to seismic fault motion: an experimental study.
    Structural Geology, Vol 38, pp. 139–155.
    [50] Toro, G.D., Goldsby, D.L., Tullis, T.E., 2004. Friction falls toward zero in
    quartz rock as slip velocity approaches seismic rates. Nature, Vol 427, pp.
    436–439.
    [51] Toro, G.D., Han, R., Hirose, T., Paola, N.D., Nielsen, S., Mizoguchi, K.,
    Ferri, F., Cocco, M., Shimamoto, T., 2011. Fault lubrication during
    earthquakes. Nature, Vol 471, pp. 494-497.
    [52] Tsutsumi, A., Shimamoto, T., 1997. High-velocity frictional properties of
    gabbro. Geophysical Research Letters, Vol 24, pp. 699–702.
    [53] Vardoulakis, I., 2000. Catastrophic landslides due to frictional heating of the
    failure plane. Mechanics of Cohesive‐frictional Materials: An
    International Journal on Experiments, Modelling and Computation of
    Materials and Structures, Vol 5, No. 6, pp. 443–467.
    [54] Varnes, D.J., 1978. Slope movement types and processes. Special report, Vol
    176, pp. 11-33.
    60
    [55] Veveakis, E., Vardoulakis, I., Toro, G.D., 2007. Thermoporomechanics of
    creeping landslides: The 1963 Vaiont slide, northern Italy. Geophysical
    Research: Earth Surface, Vol 112, F03026.
    [56] Voight, B., Faust, C., 1982. Frictional heat and strength loss in some rapid
    landslides. Geotechnique. Vol 32, No. 1, pp. 43–54.
    [57] Wada, J.I., Kanagawa, K., Kitajima, H., Takahashi, M., Inoue, A., Hirose,
    T., Ando, J.I., Noda, H., 2016. Frictional strength of ground dolerite
    gouge at a wide range of slip rates. Geophysical Research: Solid Earth,
    Vol 121, pp. 2961-2979.
    [58] Wang, F., Zhang, Y., Huo, Z., Peng, X., Wang, S., Yamasaki, S., 2008.
    Mechanism for the rapid motion of the Qianjiangping landslide during
    reactivation by the first impoundment of the Three Gorges Dam reservoir,
    China. Landslides, Vol 5. No. 4, pp. 379-386.
    [59] Wang, Y.F., Dong, J.J., Cheng, Q.G., 2017. Velocity-dependent frictional
    weakening of large rock avalanche basal facies: Implications for rock
    avalanche hypermobility? Geophysical Research: Solid Earth, Vol 122,
    pp. 1648–1676.
    [60] Wibberley, C.A.J., Shimamoto, T., 2005. Earthquake slip weakening and
    asperities explained by thermal pressurization. Nature, Vol 436, pp. 689–
    692.
    [61] Yang, C.M., Yu, W.L., Dong, J.J., Kuo, C.Y., Shimamoto, T., Lee, C.T.,
    Togo, T., Miyamoto, Y., 2014. Initiation, movement, and run-out of the
    giant Tsaoling landslide What can we learn from a simple rigid block
    model and a velocity-displacement dependent friction law?. Engineering
    Geology, Vol 182, pp. 158-181.
    [62] Yao, L., Ma, S., Platt, J.D., Niemeijer, A.R., Shimamoto, T., 2016. The
    crucial role of temperature in high-velocity weakening of faults:
    Experiments on gouge using host blocks with different thermal
    conductivities. Geology, Vol 44, No. 1, pp. 63-66.

    QR CODE
    :::