跳到主要內容

簡易檢索 / 詳目顯示

研究生: 許惠如
Hui-Ju Hsu
論文名稱: 雙溴化亞甲基分子之高靈敏度螢光分光光譜研究
Dispersed Fluorscence Spectroscopy of the dibromomethylene
指導教授: 張伯琛
Bor-Chen Chang
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 化學學系
Department of Chemistry
畢業學年度: 93
語文別: 中文
論文頁數: 83
中文關鍵詞: 雙亞甲基分子
外文關鍵詞: spin-orbit coupings, Fermi resonance
相關次數: 點閱:20下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 雙溴化亞甲基分子(dibromomethylene, CBr2),在大氣化學、材料化學以及燃燒化學中皆扮演一重要之反應中間物的角色,但因受到其單重態之電子基態以及三重態之電子激發態之spin-orbit coupings及Fermi resonance等作用力之干擾,使光譜變的複雜而難以分析。而先前的文獻受限於偵測器觀測範圍及光譜的訊雜比不良,所以對於其基態振動資訊的瞭解仍不夠完整,無法由實驗結果精確地得知單重態與三重態之能階差(signal-triplet energy gap,)值。
    本實驗利用超音速自由噴射分子束及高壓直流放電裝置搭配增強式電荷耦合偵測器(ICCD),成功取得CBr2 A state (0,13,0)(0,14,0) 能階在可見光區之新螢光分光光譜,改進光譜之訊雜比約10倍,並延伸觀測範圍由振動能量3000 cm-1至6000 cm-1。並由分析光譜完整得到基態的振動頻率、振動常數以及藉由發現在3650 cm-1之後的未知譜線來推斷三重態與單重態能差大於10 kcal/mol,其結果與理論計算相符。


    The electronic spectroscopy of halomethylenes was found to be very complicated due to a combination of spin–orbit and Fermi resonance couplings among the three low-lying electronic states. We report the new dispersed fluorescence spectrum of CBr2, in which the photomultiplier tube (PMT) detector was replaced with an intensified charge-coupled device (ICCD) detector.The new dispersed fluorescence spectra showed signal-to-noise (S/N) ratios to roughly 70, and extended the scan range form the maximum red shift frequency of 3000 cm-1 to 6000 cm-1.Complete and detailed vibrational structure of the ground singlet state was observed. Vibrational parameters including fundamental frequencies, anharmonicities, and coupling constants were determined for the CBr2 A state. Additional vibrational structure starting at approximately 3650 cm-1 was observed and this indicates the singlet–triplet energy gap to be >10 kcal / mol.

    目錄 第一章 緒論 1-1 研究方向 1 1-2 雙溴化亞甲基分子之相關研究 3 第二章 實驗 2-1 實驗目標 7 2-2 光譜技術簡介 8 2-3 超音速自由噴射裝置 9 2-4 高壓直流放電系統 15 2-5 增強式電荷耦合偵測器(Intensified charge-coupled device,ICCD) 18 2-6 實驗條件 22 2-7 實驗流程 24 第三章 CBr2之電子光譜 3-1 CBr2之研究目標 31 3-2 CBr2之螢光分光光譜與振動結構分析 33 3-3 未知譜帶之分析 41 第四章 結論 44 參考文獻 81

    1 J. S. Daniel, S. Soloman, R. W. Portman and R. R. Garcia, J.Geophys. Res.,
    1999, 104, 23871, and references therein.
    2 K. A. Peterson and J. S. Francisco, J. Chem. Phys., 2002, 117,6103, and
    references therein.
    3 W.-L. Liu and B.-C. Chang, J. Chin. Chem. Soc., 2001, 48, 613.
    4 B.-C. Chang, J. Guss and T. J. Sears, J. Mol. Spectrosc., 2003,219,136.
    5 C. J. Barden and H. F. Schaefer III, J. Chem. Phys., 2000, 112,6515, and
    references therein.
    6 A. J. Merer and D. N. Travis, Can. J. Phys., 1966, 44, 525.
    7 D. E. Milligan and M. E. Jacox, J. Chem. Phys., 1967, 47, 703.
    8 S. Xu, K. Beran and M. D. Harmony, J. Phys. Chem., 1994, 98, 2742.
    9 B.-C. Chang, M. Costen, A. J. Marr, G. Ritchie, G. E. Hall and T.J.Sears, J.
    Mol. Spectrosc., 2000, 202, 131, and references therein.
    10 A. Lin, K. Kobayashi, H.-G. Yu, G. E. Hall, J. T. Muckerman, T.J.Sears and
    A. J. Merer, J. Mol. Spectrosc., 2002, 214, 216, and references therein.
    11 L. Andrews and T. G. Carver, J. Chem Phys. ,1968, 49, 896.
    12 D. E. Tevault and L. Andrews, J. Am. Chem. Soc., 1975, 97,1707.
    13 V. E. Bondybey and J. H. English, J. Mol. Spectrosc., 1980,79,416.
    14 S. K. Zhou, M. S. Zhan, J. L. Shi and C. X. Wang, Chem. Phys. Lett., 1990,
    166, 547.
    15 S. Xu and M. D. Harmony, J. Phys. Chem., 1993, 97, 7465.
    16 R. L. Schwartz, G. E. Davico, T. M. Ramond and W. C. Lineberger, J. Phys.
    Chem. A, 1999, 103, 8213, and references therein.
    17 C.-L. Lee, M.-L. Liu and B.-C. Chang, Phys. Chem. Chem. Phys.,2003, 5, 3859.
    18 T.-C. Tsai, C.-W. Chen and B.-C. Chang, J. Chem. Phys., 2001,115, 766.
    19 C.-W. Chen, T.-C. Tsai and B.-C. Chang, J. Mol. Spectrosc., 2001,209, 254.
    20 C.-W. Chen, T.-C. Tsai and B.-C. Chang, Chem. Phys. Lett., 2001,347, 73.
    21 C.-L. Lee, M.-L. Liu and B.-C. Chang, J. Chem. Phys., 2002, 117,3263.
    22 M.-L. Liu, C.-L. Lee, A. Bezant, G. Tarczay, R. J. Clark, T. A.Miller and
    B.-C. Chang, Phys. Chem. Chem. Phys., 2003, 5, 1352.
    23 C.-S. Lin, Y.-E. Chen and B.-C. Chang, J. Chem. Phys., 2004,121,4164.
    24 E. A. Carter and W. A. Goddard III, J. Chem. Phys., 1988, 88,1752.
    25 K. K. Irikura, W. A. Goddard III and J. L. Beauchamp, J. Am.Chem. Soc.,
    1992, 114, 48.
    26 M. Schwartz and P. Marshall, J. Phys. Chem. A, 1999, 103, 7900,and
    references therein.
    27 B. Hajato’ , H. M. T. Nguyen, T. Veszpre’ mi and M. T. Nguyen,Phys. Chem.
    Chem. Phys., 2000, 2, 5041.
    28 K. Sendt and G. B. Bacskay, J. Chem. Phys., 2000, 112, 2227.
    29 E. P. F. Lee, J. M. Dyke and T. G. Wright, Chem. Phys. Lett.,2000, 326, 143.
    30 M. L. McKee and J. Michl, J. Phys. Chem. A, 2002, 106, 8495.
    31 T. A. Miller, Science,1984, 223, 545 .
    32 S.Xu,K.A.Beran,and M. D. Harmony, J. Phys. Chem. 1994,98, 2742.
    33 K. Sendt and G. B. Bacskay, J. Chem. Phys., 2000, 112, 2227.
    34 E. P. F. Lee, J. M. Dyke and T. G. Wright, Chem. Phys. Lett.,2000, 326, 143.
    35 E. B. Wilson Jr., J. C. Decius and P. C. Cross, Molecular Vibrations,
    Dover, New York, 1980.
    36 C.W.Bauschlicher Jr,J.Am.Chem.Soc,1980,102,5492.
    37 Gobbi, A.; Frenking, G. J. Chem. Soc., Chem. Commun. 1993, 1162.
    38 Russo, N.; Sicilia, E.; Toscano, M. J. Chem. Phys. 1992, 97,5031.
    39 Gutsev, G. L.; Ziegler, T. J. Phys. Chem. 1991, 95, 7220.
    40 Garcia, V. M.; Castell, O.; Reguero, M.; Caballo, R. Mol.Phys.1996, 87,1395.

    QR CODE
    :::