跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林政憲
Cheng-Hsien Lin
論文名稱: 六族過渡金屬的二維材料能帶及狀態密度計算
Electronic structures and density of states of VIB 2D materials of transition metal dichalcogenides
指導教授: 郭明庭
Ming-Ting Kuo
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 38
中文關鍵詞: 二維材料過渡金屬二硫化物緊束縛模型二硫化鉬
外文關鍵詞: 2D materials, transition metal dichalcogenides, Tight-Binding, MoS2
相關次數: 點閱:20下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文利用三種原子軌域的緊束縛模型來討論二硫化鉬及二硒化鎢等二維材料的電子能態,使用緊束縛模型模擬結果和DFT的預測值相近,也和實驗的觀測值吻合。除此之外,我們也討論了二硫化鉬奈米帶的電子能態和奈米帶寬度的變化關係。接著將電子能態的結果應用到狀態密度的計算,結果和DFT的預測值也是相近。


    In this paper, the tight-binding models of three atomic orbitals are used to discuss the electronic energy states of two-dimensional materials such as molybdenum disulfide and tungsten diselenide. . In addition, we also discussed the relationship between the electronic energy state of MoS2 nanoribbons and the nanoribbon width. The results of the electronic energy states are then applied to the calculation of the density of states, and the results are also similar to the predicted values of DFT.

    摘要 i Abstract ii 目錄 iii 圖目錄 v 表目錄 vi 第一章、導論 1 1-1 前言 1 1-2 研究動機 1 1-3 文獻回顧 1 1-4 Tight-binding 3 第二章、〖MoS〗_2模型介紹 6 2-1 Lattices structure 6 2-2 Model with nearest-neighbor hoppings 7 2-3 Monolayer 8 2-4 Nanoribbons 11 第三章、Electronic structures and density of states模擬結果與分析 13 3-1 Monolayer(MoS_2) 13 3-2 Monolayer(MX_2) 15 3-2.1 GGA參數模擬 16 3-2.2 LDA參數模擬 17 3-3 Nanoribbons (MoS_2) 18 3-4 Nanoribbons (MX_2) 20 3-5 Density of states 22 第四章、結論 24 參考文獻 25

    [1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang , S. V. Dubonos, I. V. Grigorieva and A. A. Firsov, Science, 306, 666 (2004).
    [2] K. F. Mak, L.Changgu , H. James, S. Jie and Tony F. Heinz, Phys. Rev. Lett. 105, 136805 (2010).
    [3] A. Ayari, E. Cobas , O. Ogundadegbe and M. S. Fuhrer, J Appl Phys 101,014507 (2007).
    [4] B. Radisavljevic, A. Radenovic and J. Brivio, Nat Nanotechnol 6, 147 (2011).
    [5] E. Schrodinger, Phys. Rev. 28, 1049 (1926).
    [6] W. Zawadzki, in Encyclopedia of Modern Optics (2005).
    [7] M. R. Geller, W. Kohn, Phys. Rev. B 48, 14085 (1993).
    [8] R. A. Bromley, R. B. Murray and A. D. Yoffe, Journal of Physics C, Solid State Physics 5, 759 (1972).
    [9] L. F. Mattheiss, Phys. Rev. B 8, 3719 (1973).
    [10] Z. Y. Zhu, Y. C. Cheng and U. Schwingenschlogl, Phys. Rev. B 84, 153402 (2011).
    [12] S. Lebegue and O. Eriksson, Phys. Rev. B 79, 115409 (2009).
    [13] C. Ataca, H. Şahin and S. Ciraci, J.Phys. Chem. C 116, 8983 (2012).
    [14] T. Cheiwchanchamnangij and W. R. L. Lambrecht, Phys. Rev. B 85, 205302 (2012).
    [15] E. S. Kadantsev and P. Hawrylak, Solid State Commun 152, 909(2012).
    [16] H. Zeng, B. Zhu, K. Liu, J. Fan, X. Cui and Q. M. Zhang, Phys. Rev. B 86, 241301(R) (2012).
    [17] K. Kosmider and J. Fernandez-Rossier, Phys. Rev. B 87, 075451 (2013).
    [18] Y. Song and H. Dery, Phys. Rev. Lett. 111, 026601 (2013).
    [19] M. Farmanbar, T. Amlaki and G. Brocks, Phys. Rev. B 93, 205444 (2016).
    [20] G. B. Liu, W. Y. Shan, Y. Yao, W. Yao and D. Xiao, Phys. Rev. B 88, 085433 (2013).
    [21] M. Dion, H. Rydberg, E. Schroder, D. C. Langreth and B. I. Lundqvist, Phys. Rev. Lett. 92, 246401 (2004).
    [22] Y. Ding, Y. L. Wang, J. Ni, L. Shi, S. Q. Shi and W. H. Tang, Physica B 406, 2254 (2011).
    [23] A. Faghaninia, J. W. Ager and C. S. Lo, Phys. Rev. B 91, 235123 (2015).
    [24] J. He and T. M. Tritt, Science 357, 6358 (2017).
    [25] K. Wakabayashi, K. Sasaki, T. Nakanishi and T. Enoki, Sci. Technol. Adv. Mater. 11, 054504 (2010).
    [26] Y. C. Tseng, D. M. T. Kuo, and Y. C. Chang, J. Appl. Phys. 113, 113706 (2013)

    QR CODE
    :::