| 研究生: |
林政憲 Cheng-Hsien Lin |
|---|---|
| 論文名稱: |
六族過渡金屬的二維材料能帶及狀態密度計算 Electronic structures and density of states of VIB 2D materials of transition metal dichalcogenides |
| 指導教授: |
郭明庭
Ming-Ting Kuo |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 38 |
| 中文關鍵詞: | 二維材料 、過渡金屬二硫化物 、緊束縛模型 、二硫化鉬 |
| 外文關鍵詞: | 2D materials, transition metal dichalcogenides, Tight-Binding, MoS2 |
| 相關次數: | 點閱:20 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文利用三種原子軌域的緊束縛模型來討論二硫化鉬及二硒化鎢等二維材料的電子能態,使用緊束縛模型模擬結果和DFT的預測值相近,也和實驗的觀測值吻合。除此之外,我們也討論了二硫化鉬奈米帶的電子能態和奈米帶寬度的變化關係。接著將電子能態的結果應用到狀態密度的計算,結果和DFT的預測值也是相近。
In this paper, the tight-binding models of three atomic orbitals are used to discuss the electronic energy states of two-dimensional materials such as molybdenum disulfide and tungsten diselenide. . In addition, we also discussed the relationship between the electronic energy state of MoS2 nanoribbons and the nanoribbon width. The results of the electronic energy states are then applied to the calculation of the density of states, and the results are also similar to the predicted values of DFT.
[1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang , S. V. Dubonos, I. V. Grigorieva and A. A. Firsov, Science, 306, 666 (2004).
[2] K. F. Mak, L.Changgu , H. James, S. Jie and Tony F. Heinz, Phys. Rev. Lett. 105, 136805 (2010).
[3] A. Ayari, E. Cobas , O. Ogundadegbe and M. S. Fuhrer, J Appl Phys 101,014507 (2007).
[4] B. Radisavljevic, A. Radenovic and J. Brivio, Nat Nanotechnol 6, 147 (2011).
[5] E. Schrodinger, Phys. Rev. 28, 1049 (1926).
[6] W. Zawadzki, in Encyclopedia of Modern Optics (2005).
[7] M. R. Geller, W. Kohn, Phys. Rev. B 48, 14085 (1993).
[8] R. A. Bromley, R. B. Murray and A. D. Yoffe, Journal of Physics C, Solid State Physics 5, 759 (1972).
[9] L. F. Mattheiss, Phys. Rev. B 8, 3719 (1973).
[10] Z. Y. Zhu, Y. C. Cheng and U. Schwingenschlogl, Phys. Rev. B 84, 153402 (2011).
[12] S. Lebegue and O. Eriksson, Phys. Rev. B 79, 115409 (2009).
[13] C. Ataca, H. Şahin and S. Ciraci, J.Phys. Chem. C 116, 8983 (2012).
[14] T. Cheiwchanchamnangij and W. R. L. Lambrecht, Phys. Rev. B 85, 205302 (2012).
[15] E. S. Kadantsev and P. Hawrylak, Solid State Commun 152, 909(2012).
[16] H. Zeng, B. Zhu, K. Liu, J. Fan, X. Cui and Q. M. Zhang, Phys. Rev. B 86, 241301(R) (2012).
[17] K. Kosmider and J. Fernandez-Rossier, Phys. Rev. B 87, 075451 (2013).
[18] Y. Song and H. Dery, Phys. Rev. Lett. 111, 026601 (2013).
[19] M. Farmanbar, T. Amlaki and G. Brocks, Phys. Rev. B 93, 205444 (2016).
[20] G. B. Liu, W. Y. Shan, Y. Yao, W. Yao and D. Xiao, Phys. Rev. B 88, 085433 (2013).
[21] M. Dion, H. Rydberg, E. Schroder, D. C. Langreth and B. I. Lundqvist, Phys. Rev. Lett. 92, 246401 (2004).
[22] Y. Ding, Y. L. Wang, J. Ni, L. Shi, S. Q. Shi and W. H. Tang, Physica B 406, 2254 (2011).
[23] A. Faghaninia, J. W. Ager and C. S. Lo, Phys. Rev. B 91, 235123 (2015).
[24] J. He and T. M. Tritt, Science 357, 6358 (2017).
[25] K. Wakabayashi, K. Sasaki, T. Nakanishi and T. Enoki, Sci. Technol. Adv. Mater. 11, 054504 (2010).
[26] Y. C. Tseng, D. M. T. Kuo, and Y. C. Chang, J. Appl. Phys. 113, 113706 (2013)