| 研究生: |
弗達斯 Rahmandhika Firdauzha Hary Hernandha |
|---|---|
| 論文名稱: |
碳披覆於矽負極材料增益其電化學充放鋰離子特性 Carbon-coated Silicon Anodes for Improving Lithiation-Delithiation Properties |
| 指導教授: |
張仍奎
Jeng-Kuei Chang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學與工程研究所 Graduate Institute of Materials Science & Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 英文 |
| 論文頁數: | 89 |
| 中文關鍵詞: | 鋰 、電池 、矽 、高能量 、碳塗層 、葡萄糖 、焦油 、穩定性高 |
| 外文關鍵詞: | lithium, battery, silicon, high energy, carbon coating, glucose, coal tar, high stability |
| 相關次數: | 點閱:15 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在過去的半個世紀以來,對於高功率和高效能量儲存裝置的需求日益增加。矽由於其優異的特性而被視為相當有潛力的鋰電池負極材料,例如低工作電壓,高理論比容量,低成本和大量地球。 不幸的是,矽負極在鋰化過程中嚴重地體積膨脹,這對容量衰減和循環性能影響很大。 因此,為了控制矽的體積膨脹,在矽表面上進行碳披覆及粒徑優化被認為是有潛力的方法。
在碳披覆的過程中,利用矽粉與葡萄糖/煤不同比例混合,並在熱處理後分別達到碳含量10 wt%,20 wt%,和30 wt% (煤焦油40 wt%)。 葡萄糖作為碳源似乎比煤焦油具有更好的性能。 此外,我們在最佳碳塗層含量20 wt% (GL20樣品) 獲得最佳循環性能。 並在GL20樣品中顯示出最高的首次充電容量為2689.8 mAh/g,並且高速保留率為31.4%,甚至在200次循環後仍具有1278.4 mAh/g。 此外,我們研究了粒徑對於碳披覆矽影響。 我們發現在20 wt%碳塗層中有最小粒徑 (〜100 nm) 的樣品 (SC100) 顯示出比較大粒徑尺寸的 (>400nm) 有更佳的首次充電容量 (2808.1 mAh/g) 的驚人表現和以及200次循環後仍能達到1751.5 mAh/g。 此外,添加石墨形成複合材料將會是一個較佳的手法來增益高速維持率及循環壽命。 最後一小節的研究結果證實添加 45-60 wt% KS6的石墨比起添加30 wt% 石墨時在高速維持率多了更高 增益,並且在100圈後依舊可以保持55% 的第一圈電容值。
Demand for high power and efficiency energy storage in this past half-century is tremendous high. Silicon, as a promising anode material for LIBs, has a various benefit, such as low working voltage, high theoretical specific capacity, low-cost, and earth abundance. Unfortunately, silicon anode has a big challenge in serious volume expansion during lithiation process, which affected in capacity fading and poor cycle performance. Thus, in order to control volume expansion in silicon, carbon coating and silicon particle size optimizing method lead to be promising ways.
During carbon coating process, the silicon powder mixed with glucose/coal tar at different ratios to reach 10 wt%, 20 wt%, and 30 wt% (40 wt% for coal tar) carbon contents after heat-treatment, respectively. It seems that glucose as a precursor has a better performance than coal tar. Furthermore, we got the best cycle performance at the optimum carbon content at 20 wt% (GL20 sample). GL20 sample shows high first charge capacity 2689.8 mAh/g with 31.4% in high rate retention and even after 200 cycles still stand in 1278.4 mAh/g. In addition, we investigated the particle size effect in carbon-coated silicon. Expectedly, we found that the smallest particle size (~100nm) with 20 wt% carbon coated silicon (SC100 sample) shown a breathtaking results with higher first cycle charge capacity (2838.1 mAh/g) than larger size of particle size (>400 nm) and it still can stand for 1751.5 mAh/g after 200 cycles. Moreover, additional KS6 graphite as a composite can be a good choice in increasing high rate retention and cycle performance. Based on the latest experiments of this study, it has proven that the addition of 45-60 wt% KS6 graphite can increase the high rate retention, and after 100 cycles the capacity still stand for more than 55% from its first charge capacity.
[1] J. Li, E. Murphy, J. Winnick and P. A. Kohl, "Studies on the Cycle Life of Commercial Lithium Ion Batteries during Rapid Charge–Discharge Cycling," Journal of Power Sources, vol. 102, p. 294–301, 2001.
[2] R. J. Gummow, A. d. Kock and M. M. Thackeray, "Improved Capacity Retention in Rechargeable 4V Lithium/Lithium-Manganese Oxide (Spinel) Cells," Solid State Ionics, vol. 69, pp. 59-67, 1994.
[3] C. Curry, "Lithium-ion Battery Costs and Market, Squeezed Margins Seek Technology Improvements and New Business Models," Bloomberg New Energy Finance, New York, 2017.
[4] Y. Wu, Lithium-Ion Batteries Fundamentals and Applications, Florida, USA: CRC Press (Taylor & Francis Group), 2015.
[5] A. Midilli, I. Dincer and M. Ay, "Green Energy Strategies for Sustainable Development," Energy Policy, vol. 34, no. 18, pp. 3623-3633, 2006.
[6] N.-S. Choi, Z. Chen, S. A. Freunberger, X. Ji, Y.-K. Sun, K. Amine, G. Yushin, L. F. Nazar, J. Cho and P. G. Bruce, "Challenges Facing Lithium Batteries and Electrical Double‐Layer Capacitors," Angewandte Chemie International Edition, pp. 9994-10024, 2012.
[7] J. M. Tarascon and M. Armand, "Issues and Challenges Facing Rechargeable Lithium Batteries," Nature, vol. 414, pp. 359-367, 2001.
[8] X. Su, Q. Wu, J. Li, X. Xiao, A. Lott, W. Lu, B. W. Sheldon and J. Wu, "Silicon-Based Nanomaterials for Lithium-Ion Batteries: A Review," Advance Energy Materials, vol. 4, pp. 1-23, 2014.
[9] B. Koo, H. Kim, Y. Cho, K. T. Lee, N.-S. Choi and J. Cho, "A Highly Cross-Linked Polymeric Binder for High-Performance Silicon Negative Electrodes in Lithium Ion Batteries," Angewandte Chemie International Edition, vol. 51, p. 8762 –8767, 2012.
[10] S. Hill and M. C. Galan, "Fluorescent Carbon Dots from Mono- and Polysaccharides: Synthesis, Properties and Applications," Beilstein Journal of Organic Chemistry, vol. 13, p. 675–693, 2017.
[11] P. G. Stansberry, J. W. Zondlo and A. H. Stiller, "Coal-Derived Carbons," in Carbon Materials for Advanced Technologies, Oak Ridge, Tennessee (USA), Pergamon (An Imprint of Elsevier Science), 1999, p. 205–234.
[12] L. F. King and W. D. Robertson, "A Comparison of Coal Tar and Petroleum Pitches as Electrode Binders," Fuel, vol. 47, pp. 197-212, 1968.
[13] J. M. Hutcheon, "Manufacture Technology of Baked and Graphitized Carbon Bodies," in Modern Aspects of Graphite Technology, New York (USA), Academic Press, 1970, pp. 49-78.
[14] M. Yoshio, R. J. Brodd and A. Kozawa, Lithium-Ion Batteries Science and Technologies, New York, USA: Springer, 2009.
[15] W. Luo, X. Chen, Y. Xia, M. Chen, L. Wang, Q. Wang, W. Li and J. Yang, "Surface and Interface Engineering of Silicon-Based Anode Materials for Lithium-Ion Batteries," Advanced Energy Materials, vol. 1701083, pp. 1-28, 2017.
[16] N. Liu, H. Wu, M. T. McDowell, Y. Yao, C. Wang and Y. Cui, "A Yolk-Shell Design for Stabilized and Scalable Li-Ion Battery Alloy Anodes," Nano Letters, vol. 12, p. 3315−3321, 2012.
[17] J. Wang, J. Yang and S. Lu, "A Mini Review: Nanostructured Silicon-based Materials for Lithium Ion Battery," Nanoscience & Nanotechnology-Asia, vol. 6, pp. 3-27, 2016.
[18] M. Yoshio, R. J. Brodd and A. Kozawa, Lithium-Ion Batteries Science and Technologies, New York: Springer Science & Business Media, 2009.
[19] X. H. Liu, L. Zhong, S. Huang, S. X. Mao, T. Zhu and J. Y. Huang, "Size-Dependent Fracture of Silicon Nanoparticles During Lithiation," ACS Nano, vol. 6, no. 2, p. 1522–1531, 2012.
[20] B. A. Boukamp, G. C. Lesh and R. A. Huggin, "All-Solid Lithium Electrodes with Mixed-Conductor Matrix," Journal of Electrochemical Society, vol. 128, no. 4, pp. 725-729, 1981.
[21] A. Casimir, H. Zhang, O. Ogoke, J. C. Amine, J. Lu and G. Wu, "Silicon-based Anodes for Lithium-ion Batteries: Effectiveness of Materials Synthesis and Electrode Preparation," Nano Energy, vol. 27, p. 359–376, 2016.
[22] X. Zuo, J. Zhua, P. Müller-Buschbaumb and Y.-J. Cheng, "Silicon based Lithium-ion Battery Anodes: A Chronicle Perspective Review," Nano Energy, vol. 31, p. 113–143, 2017.
[23] M. Ge, J. Rong, X. Fang and C. Zhou, "Porous Doped Silicon Nanowires for Lithium ion Battery Anode with Long Cycle Life," Nano letters, vol. 12, pp. 2318-2323, 2012.
[24] M. Ashuri, Q. Hea and L. L. Shaw, "Silicon As a Potential Anode Material for Li-ion Batteries: Where Size, Geometry and Structure Matter," Nanoscale, vol. 8, p. 74–103, 2016.
[25] A. F. Gonzalez, N.-H. Yang and R.-S. Liu, "Silicon Anode Design for Lithium-Ion Batteries: Progress and Perspectives," Journal of Physical Chemistry C, vol. 121, p. 27775−27787, 2017.
[26] Y. Cen, Q. Qin, R. D. Sisson and J. Liang, "Effect of Particle Size and Surface Treatment on Si/Graphene Nanocomposite Lithium-Ion Battery Anodes," Electrochimica Acta, vol. 251, pp. 690-698, 2017.
[27] H. Okamoto, "The Li-Si (Lithium-Silicon) System," Bulletin of Alloy Phase Diagrams, vol. 11, pp. 306-312, 1990.
[28] J. Cho, "Porous Si Anode Materials for lithium Rechargeable Batteries," Journal of Materials Chemistry (RSC), vol. 20, p. 4009–4014, 2010.
[29] U. Kasavajjula, C. Wang and A. J. Appleby, "Nano- and Bulk-Silicon-Based Insertion Anodes for Lithium-ion Secondary Cells," Journal of Power Sources, vol. 163, p. 1003–1039, 2007.
[30] M. B. Pinson and M. Z. Bazant, "Theory of SEI Formation in Rechargeable Batteries: Capacity Fade, Accelerated Aging and Lifetime Prediction," Journal of The Electrochemical Society, vol. 160, no. 2, pp. A243-A250, 2013.
[31] N. Nitta, F. Wu, J. T. Lee and G. Yushin, "Li-ion Battery Materials: Present and Future," Materials Today, vol. 18, no. 5, pp. 252-264, 2015.
[32] H. Wu, G. Zheng, N. Liu, T. J. Carney, Y. Yang and Y. Cui, "Engineering Empty Space between Si Nanoparticles for Lithium-Ion Battery Anodes," Nano Letters, vol. 12, no. 2, p. 904–909, 2012.
[33] H. Wu, G. Chan, J. W. Choi, I. Ryu, Y. Yao, M. T. McDowell, S. W. Lee, A. Jackson, Y. Yang, L. Hu and Y. Cui, "Stable Cycling of Double-Walled Silicon Nanotube Battery Anodes Through Solid–Electrolyte Interphase Control," Nature Nanotechnology, vol. 7, no. 5, pp. 310-315, 2012.
[34] J. S. Bridel, T. Azaïs, M. Morcrette, J. M. Tarascon and D. Larcher, "Key Parameters Governing the Reversibility of Si/Carbon/CMC Electrodes for Li-Ion Batteries," Chemistry of Materials, vol. 22, no. 3, p. 1229–1241, 2010.
[35] H. Shobukawa, J. Alvarado, Y. Yang and Y. S. Meng, "Electrochemical Performance and Interfacial Investigation on Si Composite Anode for Lithium Ion Batteries in Full Cell," Journal of Power Sources, vol. 359, pp. 173-181, 2017.
[36] M.-H. Ryou, G.-B. Han, Y. M. Lee, J.-N. Lee, D. J. Lee, Y. O. Yoon and J.-K. Park, "Effect of fluoroethylene carbonate on high temperature capacity retention of LiMn2O4/graphite Li-ion cells," Electrochimica Acta, vol. 55, no. 6, pp. 2073-2077, 2010.
[37] C. Xu, F. Lindgren, B. Philippe, M. Gorgoi, F. Björefors, K. Edström and T. Gustafsson, "Improved Performance of the Silicon Anode for Li-Ion Batteries: Understanding the Surface Modification Mechanism of Fluoroethylene Carbonate as an Effective Electrolyte Additive," Chemistry of Materials, vol. 27, p. 2591−2599, 2015.
[38] H. Wu, G. Chan, J. W. Choi, I. Ryu, Y. Yao, M. T. McDowell, S. W. Lee, A. Jackson, Y. Yang, L. Hu and Y. Cui, "Stable Cycling of Double-Walled Silicon Nanotube Battery Anodes through Solid–Electrolyte Interphase Control," Nature Nanotechnology, vol. 7, pp. 310-315, 2012.
[39] R. Yuge, A. Toda, K. Fukatsu, N. Tamura, T. Manako, K. Nakahara and K. Nakano, "Effect of Volume Expansion on SEI Covering Carbon-Coated Nano-Si/SiO Composite," Journal of The Electrochemical Society, vol. 160, no. 10, pp. A1789-A1793, 2013.
[40] S. Chen, L. Shen, P. A. v. Aken, J. Maier and Y. Yu, "Dual-Functionalized Double Carbon Shells Coated Silicon Nanoparticles for High Performance Lithium-Ion Batteries," Advanced Materials, vol. 1605650, pp. 1-8, 2017.
[41] Y.-S. Hu, R. D. Cakan, M.-M. Titirici, J.-O. Müller, R. Schlögl, M. Antonietti and J. Maier, "Superior Storage Performance of a Si@SiOx/C Nanocomposite as Anode Material for Lithium-Ion Batteries," Angewandte Chemie International Edition, vol. 47, p. 1645 –1649, 2008.
[42] X. Ma, Y. Liu, L. Kong, Y. Ding, J. Zhao and N. Xu, "Lithium-ion Battery Anode Electrochemical Properties of Si/C Composites Using Graphite and Glucose as Carbon Source," Advanced Materials Research, Vols. 347-353, pp. 3506-3509, 2012.
[43] R. Shaw, "ATA Scientific," 23 April 2013. [Online]. Available: http://149.171.168.221/partcat/wp-content/uploads/Malvern-Zetasizer-LS.pdf. [Accessed 26 June 2018].
[44] K. Kabezya and H. Motjotji, "The Effect of Ball Size Diameter on Milling Performance," Journal of Material Sciences & Engineering, vol. 4, no. 1, pp. 1-3, 2015.
[45] A. Fayyaz, N. Muhamad, A. B. Sulong, H. S. Yunn, S. Y. M. Amin and J. Rajabi, "Effect of Dry and Wet Ball Milling Process on Critical Powder Loading and Mixture Properties of Fine WC-10Co-0.8VC Powder," Jurnal Teknologi (Sciences & Engineering), vol. 59, p. 141–144, 2012.
[46] M.-G. Li, C.-J. Sun, S.-H. Gau and C.-J. Chuang, "Effects of Wet Ball Milling on Lead Stabilization and Particle Size Variation in Municipal Solid Waste Incinerator Fly Ash," Journal of Hazardous Materials, vol. 174, p. 586–591, 2010.
[47] R. R. Devarapalli, S. Szunerits, Y. Coffinier, M. V. Shelke and R. Boukherroub, "Glucose-Derived Porous Carbon-Coated Silicon Nanowires as Efficient Electrodes for Aqueous Micro-Supercapacitors," ACS Applied Materials Interfaces, vol. 8, pp. 4298-4302, 2016.
[48] D. Li, F. Tian, B. Chu, D. Duan, X. Sha, Y. Lv, H. Zhang, N. Lu, B. Liu and T. Cui, "Ab Initio Structure Determination of n-Diamond," Scientific Reports, vol. 5:13447, pp. 1-8, 2015.
[49] Y. Liu, A. Wiek, V. Dzhagan and R. Holzea, "Improved Electrochemical Behavior of Amorphous Carbon-Coated Copper/CNT Composites as Negative Electrode Material and Their Energy Storage Mechanism," Journal of The Electrochemical Society, vol. 163, no. 7, pp. A1247-A1253, 2016.
[50] Y.-J. Han, J. Kim, J.-S. Yeo, J. C. An, I.-P. Hong, K. Nakabayashi, J. Miyawaki, J.-D. Jung and S.-H. Yoon, "Coating of Graphite Anode with Coal Tar Pitch as an Effective Precursor for Enhancing the Rate Performance in Li-ion Batteries: Effects of Composition and Softening Points of Coal Tar Pitch," Carbon, vol. 94, p. 432–438, 2015.
[51] S. Chen, P. Bao, X. Huang, B. Sun and G. Wang, "Hierarchical 3D Mesoporous Silicon@Graphene Nanoarchitectures for Lithium Ion Batteries with Superior Performance," Nano Research, vol. 7, no. 1, p. 85–94, 2014.
[52] M. Marton, M. Vojs, E. Zdravecká, M. Himmerlich, T. Haensel, S. Krischok, M. Kotlár, P. Michniak, M. Veselý and R. Redhammer, "Raman Spectroscopy of Amorphous Carbon Prepared by Pulsed Arc Discharge in Various Gas Mixtures," Journal of Spectroscopy, vol. 2013: 467079, pp. 1-6, 2013.
[53] J. Schwan, S. Ulrich, V. Batori, H. Ehrhardt and S. R. P. Silva, "Raman Spectroscopy on Amorphous Carbon Films," Journal of Applied Physics, vol. 80, no. 1, pp. 440-447, 1996.
[54] A. C. Ferrari and J. Robertson, "Resonant Raman Spectroscopy of Disordered, Amorphous, and Diamondlike Carbon," Physical Review B, vol. 64, no. 2001: 075414, pp. 1-13, 2001.
[55] A. C. Ferrari and J. Robertson, "Raman Spectroscopy of Amorphous, Nanostructured, Diamond-like Carbon, and Nanodiamond," Philosophical Transactions of the Royal Society A, vol. 362, p. 2477–2512, 2004.
[56] H.-J. Scheibe, D. Drescher and P. Alers, "Raman Characterization of Amorphous Carbon Films," Fresenius' Journal of Analytical Chemistry, vol. 353, no. 5–8, p. 695–697, 1995.
[57] PerkinElmer, "A Beginner’s Guide for Thermogravimetric Analysis (TGA)," Perkin Elmer, Inc., Massachusetts (USA), 2010.
[58] Z. P. Guo, E. Milin, J. Z. Wang, J. Chen and H.-K. Liu, "Silicon/Disordered Carbon Nanocomposites for Lithium-Ion Battery Anodes," Journal of The Electrochemical Society, vol. 152, no. 11, pp. A2211-A2216, 2005.
[59] Y.-X. Wang, S. Chou, H.-K. Liu and S. X. Dou, "Nanocomposites of Silicon and Carbon Derived from Coal Tar Pitch: Cheap Anode Materials for Lithium-Ion Batteries with Long Cycle Life and Enhanced Capacity," Electrochimica Acta, vol. 93, pp. 213-221, 2013.
[60] GamryInstruments, "Application Notes: Basics of Electrochemical Impedance Spectroscopy," Gamry Instruments, Inc., Warminster, PA, 2010.
[61] J. Yu, J. Yang, X. Feng, H. Jia, J. Wang and W. Lu, "Uniform Carbon Coating on Silicon Nanoparticles by Dynamic CVD Process for Electrochemical Lithium Storage," ACS Industrial & Engineering Chemistry Research, vol. 53, p. 12697−12704, 2014.
[62] P. Gao, J. Fu, J. Yang, R. Lv, J. Wang, Y. Nuli and X. Tang, "Microporous Carbon Coated Silicon Core/Shell Nanocomposite Via In Situ Polymerization for Advanced Li-ion Battery Anode Material," Physical Chemistry Chemical Physics, vol. 11, p. 11101–11105, 2009.
[63] Y. Xu, Y. Zhu and C. Wang, "Mesoporous Carbon/Silicon Composite Anodes with Enhanced Performance for Lithium-ion Batteries," Journal of Materials Chemistry A, vol. 2, p. 9751–9757, 2014.
[64] S. H. Ng, J. Wang, D. Wexler, S. Y. Chew and H. K. Liu, "Amorphous Carbon-Coated Silicon Nanocomposites: A Low-Temperature Synthesis via Spray Pyrolysis and Their Application as High-Capacity Anodes for Lithium-Ion Batteries," ACS Journal of Physical Chemistry Part C: Nanomaterials and Interfaces, vol. 111, no. 29, pp. 11131-11138, 2007.
[65] A. Shahverdi, K. S. Kim, Y. Alinejad, G. Soucy and J. Mostaghimi, "Selective Oxidation of Excess Amorphous Carbon during Single-Walled Carbon Nanotubes Synthesis by Induction Thermal Plasma Process," Journal of Nano Research, vol. 2, pp. 800-812, 2009.
[66] F. M. Wachid, A. Y. Perkasa, F. A. Prasetya, N. Rosyidah and Darminto, "Synthesis and Characterization of Nanocrystalline Graphite from Coconut Shell with Heating Process," in 5th Nanoscience and Nanotechnology Symposium by American Institute of Physics, Surabaya, 2014.
[67] S. Chen, Y. Xin, Y. Zhou, F. Zhang, Y. Ma, H. Zhou and L. Qi, "Branched CNT@SnO2 Nanorods@Carbon Hierarchical Heterostructures for Lithium Ion Batteries with High Reversibility and Rate Capability," Journal of Materials Chemistry A, vol. 2, pp. 15582-15589, 2014.
[68] B. Zhou, S. Yang, L. Wu, W. Wu, W. Wei, L. Chen, H. Zhang, J. Pan and X. Xiong, "Amorphous Carbon Framework Stabilized SnO2 Porous Nanowires as High Performance Li-ion Battery Anode Materials," RSC Advances, vol. 5, p. 49926–49932, 2015.
[69] J. Zhang, C. Zhang, S. Wu, X. Zhang, C. Li, C. Xue and B. Cheng, "High-Columbic-Efficiency Lithium Battery Based on Silicon Particle Materials," Nanoscale Research Letters, vol. 10, no. 395, pp. 1-5, 2015.
[70] N. Lavoie, F. M. Courtel, P. R. Malenfant and Y. Abu-Lebdeh, "Graphene-Based Composite Anodes for Lithium-Ion Batteries," in Nanostructure Science and Technology: Nanotechnology for Lithium-Ion Batteries, Ottawa, Canada, Springer Science & Business Media, 2013, pp. 117-162.
[71] M. T. McDowell, S. W. Lee, J. T. Harris, B. A. Korgel, C. Wang, W. D. Nix and Y. Cui, "In Situ TEM of Two-Phase Lithiation of Amorphous Silicon Nanospheres," Nano Letters, vol. 13, no. 2, p. 758–764, 2013.
[72] S. Iwamura, H. Nishihara and T. Kyotani, "Effect of Buffer Size around Nanosilicon Anode Particles for Lithium-Ion Batteries," Journal of Physical Chemistry C, vol. 116, p. 6004−6011, 2012.
[73] T. Huang, Y. Yang, K. Pu, J. Zhang, M. Gao, H. Pana and Y. Liu, "Linking Particle Size to Improved Electrochemical Performance of SiO Anodes for Li-ion Batteries," RSC Advances, vol. 7, p. 2273–2280, 2017.
[74] Z. Favors, W. Wang, H. H. Bay, Z. Mutlu, K. Ahmed, C. Liu, M. Ozkan and C. S. Ozkan, "Scalable Synthesis of Nano-Silicon from Beach Sand for Long Cycle Life Li-ion Batteries," Scientific Reports, vol. 7, pp. 1-7, 2014.
[75] J. J. Wu and W. R. Bennett, "Fundamental Investigation of Si Anode in Li-Ion Cells," in Institute of Electrical and Electronics Engineers (IEEE) Energy Tech Conference, Cleveland, US, 2012.
[76] Q. Xu, J. Li, Y. Yin, Y. Kong, Y. Guo and L. Wan, "Nano/Micro‐Structured Si/C Anodes with High Initial Coulombic Efficiency in Li‐Ion Batteries," Chemistry an Asian Journal, vol. 11, no. 8, pp. 1205-1209, 2016.
[77] C.-H. Yim, S. Niketic, N. Salem, O. Naboka and Y. Abu-Lebdeh, "Towards Improving the Practical Energy Density of Li-Ion Batteries: Optimization and Evaluation of Silicon: Graphite Composites in Full Cells," Journal of The Electrochemical Society, vol. 164, no. 1, pp. A6294-A6302, 2017.
[78] C.-H. Yim, F. M. Courtel and Y. Abu-Lebdeh, "A High Capacity Silicon–Graphite Composite as Anode for Lithium-ion Batteries Using Low Content Amorphous," Journal of Materials Chemistry A, vol. 1, p. 8234–8243, 2013.
[79] R. Yazami, Nanomaterials for Lithium-Ion Batteries Fundamentals and Applications, Florida, USA: CRC Press (Taylor & Francis Group), 2014.
[80] F. Beer and E. Johnston Jr., Mechanics of Materials, 2nd Edition, New York: McGraw-Hill, 1992.
[81] R. E. Sonntag and C. Borgnakke, Fundamentals of Thermodynamics, 7th Edition, Michigan: John Wiley & Sons Inc., 2009.
[82] B. Bhattarai, A. Pandey and D. A. Drabold, "Evolution of Amorphous Carbon Across Densities: An Inferential Study," Carbon, vol. 131, pp. 168-174, 2018.
[83] P. Kumar, M. Gupta, U. P. Deshpande, D. M. Phase, V. Ganesan and J. Stahn, "Density and Microstructure of a-C Thin Films," Materials Science [cond-mat.mtrl-sci], vol. 1801, pp. 1-6, 2018.
[84] W. A. Van Schalkwijk and B. Scrosati, Advances in Lithium-Ion Batteries, New York: Kluwer Academic Publisher, 2002.
[85] V. Etacheri, R. Marom, R. Elazari, G. Salitra and D. Aurbach, "Challenges in the Development of Advanced Li-ion Batteries: A Review," Energy & Environmental Science, vol. 4, no. 9, pp. 3243-3262, 2011.
[86] B. Simon and J.-P. Boeuve, "Rechargeable Lithium Electrochemical Cell". USA Patent 5626981, 05 June 1997.
[87] E. Markevich, G. Salitra and D. Aurbach, "Fluoroethylene Carbonate as an Important Component for the Formation of an Effective Solid Electrolyte Interphase on Anodes and Cathodes for Advanced Li-Ion Batteries," ACS Energy Letters, vol. 2, no. 6, p. 1337–1345, 2017.
[88] SigmaAldrich, "Sigma Aldrich (Merck)," 2018. [Online]. Available: https://www.sigmaaldrich.com. [Accessed 26 June 2018].
[89] L. Liu, J. Lyu, T. Lia and T. Zhao, "Well-Constructed Silicon-based Materials as High-Performance Lithium-ion Battery Anodes," Nanoscale, vol. 8, p. 701–722, 2016.