| 研究生: |
林昌源 Chang-Yuan Lin |
|---|---|
| 論文名稱: |
集集地震液化土之穩態強度 The steady-state strength of soils after liquefaction during Chi-Chi earthquake. |
| 指導教授: |
黃俊鴻
Jin-Hung Hwang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 131 |
| 中文關鍵詞: | 不排水臨界強度 、穩態強度 、地盤永久變位 、三軸壓密不排水試驗 |
| 外文關鍵詞: | steady state strength, permanent horizontal displacement, consolidated-undrained triaxial compression test, undrained critical strength |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
集集地震中因土壤液化所造成之地盤沉陷、側向流動處處可見,例如:霧峰鄉乾溪河岸太子城堡社區因地盤流動而嚴重滑移及傾斜。土壤液化後所產生地盤變位是地震災害中最常見也最具破壞性之地變型態,地盤液化後所產生的永久變位,受液化土層殘餘(臨界)強度所影響,因此,有必要瞭解土壤液化後產生流動時的殘餘強度,進而利用Newmark剛性塊滑體模式推估所產生的水平地盤永久變位。
本研究探討沉泥質砂與煤灰於壓密、受剪過程中的力學行為,並建立台灣地區液化層的SPT-N值與不排水臨界強度比之關係,期望能夠對地震所造成之液化行為更瞭解,進而利用於災害防治與工程設計上。土壤的不排水臨界強度為液化後穩定分析的主要參數,臨界強度可經由液化案例反算求得,但反算之臨界強度因假設液化後產生流動時可能發生排水的行為,所以強度較高。因此,使用實驗室不排水試驗推估臨界強度,在液化的穩定性分析上較為保守。
Chi-Chi earthquake was intensity led to severe damage due to soil liquefaction in Wufeng, an area beside the western foothills of the island. The post-liquefaction shear strength of sands, called the undrained critical strength. The stability of the original slope configuration at the instant of liquefaction is determined by the undrained critical strength of liquefied sand. The results from an experimental study on silty sands are presented and evaluated in view of the framework of critical-state or steady-state soil mechanics. Strain-controlled, consolidated-undrained triaxial compression tests were performed on silty sands and coal ashes on reconstituted soil samples.
Silty sands are the most common type of soil involved in both static and earthquake-induced liquefaction. This conclusion is based upon an extensive review of the literature. For seismic stability analysis of an existing slope ,drainage of the slide mass during post-liquefaction flow cannot be assumed .Therefore, a value of undrained critical strength (Su) corresponding to constant volume or an undrained condition and the original slope geometry must be used in stability analysis. A technique for estimating undrained critical strength ratio using (N1)60-CS was sought from undrained laboratory test results. Newmark’s rigid block sliding model is used to estimate the permanent horizontal displacement with the steady state strength parameter obtained from laboratory.
參考文獻
1. 吳俊逸,「土壤液化引致地盤永久變位之研究」,碩士論文,國立中央大學土木工程學系,中壢(2000)。
2. Timothy, D.S., and Gholamreza, M., “Undrained shear strength of liquefied sands for stability analysis,” Journal of Geotechnical Engineering, ASCE, Vol. 118, No. 11, pp. 1127-1147 (1992).
3. Jerry, A.Y., and Poul, V.L., “Steady-state concepts and static liquefaction of silty sands,” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 124, No. 9, pp. 868-877 (1998).
4. Ishihara, K., Cubrinovski, M., and Nonaka, T., “Characterization of undrained behavior of soils in the reclaimed area of Kobe,” Special Issue of Soils and Foundations, pp. 33-46 (1998).
5. Konrad, J.M., and Watts, B.D., “Undrained shear strength for liquefaction flow failure analysis,” Canadian Geotechnical Journal, Vol. 32,No. 5, pp. 783-794 (1995).
6. Konrad, J.M., “Minimum undrained strength versus steady-state strength of sand,” Journal of Geotechnical Engineering, Vol. 116, No. 6, pp. 948-963 (1990).
7. Schanz, T., and Vermeer, P.A., “Angles of friction and dilatancy of sand,” Geotechnique, Vol. 46, No.1, pp. 145-151 (1996).
8. Abramson, L. W., Lee, T. S., Sharma, S. and Boyce, G. M., Slope Stability And Stabilization Methods, John Wiley & Sons, Inc., New York, pp. 337-415 (1996).
9. Thevanayagam, S., Ravishankar, K., and Mohan, S., “Effects of Fines on Monotonic Undrained Shear Strength of Sandy Soils,” Geotechnical Testing Journal, GTJODJ, Vol. 20, No. 4,pp. 394-406(1997).
10. Lambe, T.W., and Whitman, R.V., Soil Mechanics, John Wiley, New York, pp.423-455. (1979).
11. Wride, C.E., Mcroberts, E.C., and Robertson, P.K., “Reconsideration of case histories for estimating undrained shear strength in sandy soils,” Canadian Geotechnical Journal, Vol. 36, No. 5,pp. 907-933(1999).
12. Naeini, S.A., Baziar, M.H., “Effect of sample preparation on steady state,” Geotechnical Special Publication, pp. 16-29 (2000).
13. Alarcon-Guzman, A., Leonards, G. A., and Chameau, J.L., “Undrained monotonic and cyclic strength of sands,” Journal of Geotechnical Engineering, ASCE, Vol. 116, No. 6, pp. 1089-1109 (1988).
14. Hryciw, R.D., Vitton, S., and Thomann, T.G., “Liquefaction and flow failure during seismic exploration,” Journal of Geotechnical Engineering, ASCE, Vol. 116, No. 12, pp. 1881-1899 (1990).
15. Kramer, S.L., and Seed, H.B., “Initiation of soil liquefaction under static loading conditions,” Journal of Geotechnical Engineering, ASCE, Vol. 114, No. 4, pp. 412-430 (1988).
16. Liao, S.C., and Whitman, R.V., “Overburden correction factors for SPT in sand,” Journal of Geotechnical Engineering, ASCE, Vol. 112, No. 3, pp. 373-377 (1985).
17. Been, K., Jefferies, M..G., and Hachey, J., “The critical state of sands,” Geotechnique, Vol. 41, No. 3, pp. 365-381 (1991).
18. Yoshimine, M., Robertson, P.K., and Wride, C.E., “Undrained shear strength of clean sands to trigger flow liquefaction,” Canadian Geotechnical Journal, Vol. 36, No. 5, pp. 891-906 (1999).
19. Lehane, B.M., and Jardine, R.J., “Residual strength characteristics of Bothkennar clay,” Geotechnique, Vol. 42, No. 2, pp. 363-367 (1992).
20. Yasuda, S., Ishihara, K., Harada, K. and Shinkawa, N., “Effect of soil improvement on ground subsidence due to liquefaction,” Soils and Foundations, Special Issue on Geotechnical Aspects of the January 17, 1995 Hyogoken-Nambu Earthquake, pp. 99-107 (1996).
21. Been, K., and Jefferies, M.G., “State parameter for sands,” Geotechnique, Vol. 35, No. 2, pp. 99-112 (1985).
22. Sladen, J.A., and Oswell, J.M., “Behavior of very loose sand in the triaxial compression test,” Canadian Geotechnical Journal, Vol. 27, No. 1, pp. 162-163 (1990).
23. Zhang, H., and Garga, V.K., “Quasi-steady state: A real behavior,” Canadian Geotechnical Journal, Vol. 34, No. 5, pp. 749-761 (1997).
24. Ishihara, K., Yasuda, S. and Yoshida, Y., “Liquefaction-induced flow failure of embankments and residual strength of silty sands,” Soils and Fooundations, Vol. 30, No. 3, pp. 69-80 (1990).
25. Schoenemann, M.R., and Pyles, M.R., “Statistical description of triaxial shear test results,” Geotechnical Testing journal, Vol. 13, No. 1, pp. 58-62 (1990).
26. Cubrinovski, M., and Ishihara, K., “Modelling of sand behavior based on state concept,” Soils and Foundations, Vol. 38, No. 3, pp. 115-126 (1998).
27. Yamamuro, J.A., and Lade, P.V., “Effects of strain rate on instability of granular soils,” Geotechnical Testing journal, Vol. 16, No. 3, pp. 304-313 (1993).
28. Lade, P.V., “Static instability and liquefaction of loose fine sandy slopes,” Journal of Geotechnical Engineering, ASCE, Vol. 118, No. 1, pp. 51-71 (1992).
29. Zlatovic, S., and Ishihara, K., “Normalized behavior of very loose non-plastic soils: effects of fabric,” Soils and Foundations, Vol. 37, No. 4, pp. 47-56 (1997).
30. Kramer, S.L., and Seed, H.B., “Initiation of soil liquefaction under static loading conditions,” Journal of Geotechnical Engineering, ASCE, Vol. 114, No. 4, pp. 412-430 (1988).
31. Bolton, M.D., “The strength and dilatancy of sand,” Geotechnique, Vol. 36, No. 1, pp. 65-78 (1986).