| 研究生: |
高淑惠 Shu-Hui Kao |
|---|---|
| 論文名稱: |
海洋放流污水添加次氯酸鈉消毒劑之效益評析 The Best Dosage of Sodium Hypochlorite(NaOCl) for Wastewater Disposal into the Ocean after Primary Treatment |
| 指導教授: |
李俊福
Jiunn-Fwn Lee |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程研究所在職專班 Executive Master of Environmental Engineering |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 89 |
| 中文關鍵詞: | 大腸桿菌 、污水處理廠 、次氯酸鈉 、海洋放流水 |
| 外文關鍵詞: | Wastewate, Ocean Disposal, Disinfectant, E. coli |
| 相關次數: | 點閱:13 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究之主要目的為探討廢污水在海洋放流時,大腸桿菌在高鹽份濃度水體之自然衰減情形,同時評估不同加氯量與不同的海洋環境條件時,對大腸桿菌消減之影響,所獲得之結果,可以提供各污水處理廠在海洋放流時添加次氯酸鈉濃度之參考依據。
實驗以八里污水處理廠為例,探討放流污水在不同的海水溫度(20℃、25℃、30℃)、不同旳海水鹽度(10%o、20%o、35%o)及控制添加次氯酸鈉加藥量(0ppm、2ppm、3.5ppm、3.8ppm、4ppm、8ppm),對大腸桿菌影響。經由本實驗結果可得知符合法規放流標準之最適添加量,進而分析加藥量來節省操作成本。由八里污水處理廠放流水水質之變化顯示經加氯消毒所得之大腸桿菌數與法規相差甚多,而其他放流水水質分析結果亦顯示大腸桿菌受水質變化而產生差異的可能性不高。
藉由實驗結果計算大腸桿菌衰減速率常數,在設定的三種鹽份濃度下,大腸桿菌的數量在初始的10分鐘內即有明顯的衰減現象,而後趨於平緩,表示大腸桿菌於高濃度鹽份下有明顯衰減比例,呈現35%o>20%o>10%o ,這顯示鹽份濃度仍是決定大腸桿菌存活之重要因子,但經過一定時間後大腸桿菌衰減情形會達極限。在另一方面,次氯酸鈉加入後,所有大腸桿菌去除率皆明顯提高,即使高溫下的鹽類影響仍不明顯,表示相較於次氯酸鈉與溫度等環境因子,鹽份濃度並不是大腸桿菌衰減之絶對佔優勢因子。
因此,由實驗結果中得知當鹽份濃度為35%o時,其添加2.0ppm之次氯酸鈉即可符合海洋放流水標準,以目前八里污水處理廠之次氯酸鈉添加量4.0ppm,換言之,一半之次氯酸鈉加藥量,即可達到排放標準,若據此作為操作依據,則應可節省一半之加藥量的費用。
The objective of this study is to examine the depletion ratios of E. coli in variously simulated environmental conditions as wastewater is discharges into the ocean. The appropriately added amount of the disinfectant NaOCl was experimentally determined in order to save the extra operation cost and reduce impact to ocean creatures. The effluent of a primary treatment plant, Bali Wastewater Treatment Plant, is investigated to elucidate the above-mentioned consideration. The obtained result can be a good reference to the other wastewater treatment plants regarding the addition of NaOCl before the ocean disposal.
In this study, the influences of the environmental conditions on E. coli depletion were investigated. The experimental conditions consisted of temperatures (20℃, 25℃ and 30℃); salt concentrations (10%o, 20%o and 35%o), and the different dosage of NaOC1. The experiment is divided into two groups including kinetic depletion rate constant and depletion ratios within 30 minutes. In addition, the wastewater characteristics of Bali Wastewater Treatment Plant were also studied so as to evaluate whether the obtained result can be applied to other wastewater treatment plants or not.
The E. coli numbers in the effluent of Bali Wastewater Treatment Plant are maintained from 240000 to 360000 CFU /ml. The results of the E. coli depletion without NaOCl conditions indicate a dramatically reductive E. coli numbers within the initial 5 minutes under the selected salt concentrations. The increasing temperature and salinity increase E. coli depletion. When the NaOCl is added into the effluent, the depletion rates of the E. coli can fit the Chick’s law. However, the increases in E. coli depletion ratios significantly slow down as the added NaOCl concentration exceeds 2.0ppm. If NaOCl is absent in the effluent, the E. coli numbers will be permitted according to the criteria of wastewater ocean disposal (100000 CFU/ml) under the temperature above 30℃ and salinity above 20%o. For the other environmental conditions, 2.0 ppm of NaOCl is regarded as the best dosage of the disinfectant for the economic cost consideration. To compare the best 2.0ppm dosage with the present 4.0 ppm dosage, the operation cost can be therefore saved from 11 to 18 million dollars /year.
參考文獻
Alkan,U., Elliott, D. J. and Evison, L. M. “Survival of enteric bacteria in relation to simulated solar radiation and other environmental factors in marine water” , Water Res., 29(9), p. 2071-2080,1995.
Blatchley III, E. R. , Hunt B. A., Duggirala, R., Thompson, J. E., Zhao, J., Halaby, T., Cowger, R. L., Straub, C. M. and Alleman, J. E. “Effects of disinfectants on wastewater effluent toxicity” Water Res., 31(7), p1581-1588,1997.
Cairns , J.J. Heath, A. G., Parker , B. C., “ Temperature Influence on Chemical Toxicity to Aquatic Organisms”,J. Water Pollut. Control Fed., Vol. 47, p.179-184, 1975.
Chigbu, P., Gordon, S. and Strange, T. “Influence of inter-annual variations in climatic factors on fecal coliform levels in Mississippi Sound”, Water Res ., 38(20) ,p.4341-4352,2004
Christopher C. Baker and Don B. Bursill, “South Australian Water : A Disinfection Problem”, Water Chlorination ,p.47-59,1987.
Fair, G.M. et al., “The Behavior of Chlorine as a Water Disinfectant”, J. AWWA, p.1051-1961,1948
Gameson, A. L. H. and Saxon, J. R. “Field studies on effect of daylight on mortality of coliform bacteria”, Water Res., 1(4) ,pp 279-295,1967
Juan C. Canteras, Joes A. Juanes, Luisa Perez and Kalin N. Koev,”Modelling the coliforms inacrivation rates in the cantabrian sea(Gulf of Biscay) from “in situ” and laboratory determination of T90 “, IAWQ International specialized conference on marine disposal systems , ISTANBUL-TURKEY, 9-11 November ,p.27-34,1994
Jennifer Orme, Cynthia Sonich Mullin, and Edward V. Ohanian ,”Health Effects of Disinfectants and Disinfection By-products: A Regulatory Perspective”, Water Chlorination ,p.75-87,1987
Hass, C. N., and R. S. Engelbrecht.” Physiological alterations of vegetative microorganisms resulting from chlorination.” J. Water Pollut. Control Fed. 52 ,p.1976-1989,1980
Hoyana, Y., V. Bacon, R.E. Summons, W.E. Pereira, B. Helpern, and A.m. Duffield. “Chlorination studies: IV. Reactions of aqueous hypochlorous acid with pyrimidine and purine bases”. Biochem Bioph. Res. Co. 53,p.1195-2001,1973
Kulikovsky, A. H.S. Pankratz, and S. L. Sadoff.” Ultrastural and chemical changes in spores of Bacillus cereus after acrion of disinfectants.” J. Appl. Bacteriol. 38,p.39-46,1975
Longley K. E., “Wastewater Disinfection”, Manual of Practice, No. FD-10, 1986
Mallin, M. A., Esham, E. C., Williams K. E. and Nearhoof, J. E. “Tidal Stage Variability of Fecal Coliform and Chlorophyll a Concentrations in Coastal Creeks” , Mar. Pollut. Bull., 38(5), p.414-422,1999.
Marshall, K C.,Stout R., and Mitchell R., “Mechanism of the initial events in the sorption of marine bacteria to surfaces”, Journal of General Microbiology 68 p.337-343,1971
Mezrioui, N., Baleux, B. and Troussellier, M. “A microcosm study of the survival of Escherichia coli and Salmonella typhimurium in brackish water” Water Res., 29(2) pp459-465,1995.
Neill, M. ”Microbiological Indices for total coliform and E. coli bacteria in estuarine waters “, Mar. Pollut. Bull., 49(9-10), p. 752-760, 2004.
Ralph Mitchell, “Physical destruction”,Introduction to Environmental Microbiology, p.101-104, 1974.
Shih, J.L. and J. Lederberg. “Effect of chloramines on Bacillus subtilis deoxyribonucleic acid.” J. Bacteriol. 125,p.934-945,1974
Solic M. and Krstulovic, N.,” Separate and combined effects of solar radiation, temperature, salinity, and pH on the survival of faecal coliforms in seawater”, Mar. Pollut. Bull., 24(8), p.411-416,1992
Venkobachar, C., Z. Invegar, and A,. V.S. Prabhakara Raj. “ Mechanism of disinfection: Effect of chlorine on cell membrane functions.” Water. Res. 11,p.727-729,1977
Yang, L., Chang W.-S. and Huang Lo M.-N., “Natural Disinfection of Wastewater in Marine in Marine Outfall Fields”, Water. Res. ,34(3),p.743-750,2000.
王貴譽與張瑞烽,「微生物學」,中央圖書出版社,1993
台北市政府工務局衛生下水道工程處,「淡水河系污水下水系統委託代操作維護」操作維護年報,1998~2004
林哲昌,「廢水UV消毒處理技術特性與應用實例」,「台灣環保產業雙月刊」,第二十期,p.5-7,2003
林正芳譯,「水及廢水處理理論與實務」,六合出版社,2002
吳先琪、王美雪、施養信、劉泰銘譯,「廢水微生物學」,曉園出版社,2000
陳育明,「控制污水消毒加氯量之可行性分析」,碩士論文,淡江大學水資源及環境工程研究所,1997
高雄市政府工務局下水道工程處,「高雄中區污水處理廠簡介」
張文旭,「廢水於海洋環境中消毒機制之研究-以大腸桿菌為指標」,碩士論文,國立中山大學海境海洋研究所,1997
梁乃匡,與王冑,「淺水物理海洋特性-台灣西海岸之實例」,第十五屆海洋工程研討會特別專題,沿岸地區海陸交會作用,p.1-7,1987
行政院環保署環境檢驗所,「水中大腸桿菌群檢測方法-濾膜法NIEAE 202.52B」,2004
行政院環保署,「水污染防治法規」
行政院環保署,「水污染防治法規施行細則」
行政院環保署,「87年度海域環境品質監測計劃」,1998
行政院環保署資料庫,http://edb.epa.gov.tw/