| 研究生: |
李明叡 Ming-Jui Lee |
|---|---|
| 論文名稱: |
成長於同調性基板的氮化鎵及氮化鋁磊晶層 Growth of GaN and AlN on Compliant Substrates |
| 指導教授: | 賴昆佑 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 英文 |
| 論文頁數: | 76 |
| 中文關鍵詞: | 氮化鎵 、氮化鋁 |
| 外文關鍵詞: | GaN, AlN |
| 相關次數: | 點閱:15 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為了降低氮化物的磊晶成本,本研究以濺鍍的方式,在矽基板及多晶氮化鋁基板上形成緩衝層,以提供氮化物磊晶之同調性環境。由於矽基板與氮化鎵之間有極大的晶格與熱膨脹係數差異,使得氮化鎵的晶格應力在隨著厚度增加之後,易導致磊晶層龜裂。在矽基板上,我們以氧化鋅薄膜做為氮化鎵的磊晶緩中層,這是因為氧化鋅與氮化鎵的晶格差異只有1.8%。在研究的過程中,我們發現氧化鋅薄膜的厚度與氮化鎵的磊晶品質間有密切的關聯。
本研究所使用的多晶氮化鋁基板以粉末壓製而成,由於基板表面過於粗糙,不適於磊晶成長。為了解決此問題,我們利用射頻磁控濺鍍系統,在氮化鋁基板上鍍上一層類單晶氮化鋁,並透過鍍膜過程中的氬氣與氮氣流量來控制薄膜的品質。此氮化鋁濺鍍層,不但能提升基板表面的平整度,也能改善基板表面的晶格品質。
在磊晶的過程中,我們發現成長於氮化鋁基板上的磊晶面呈現金字塔狀的形貌,即半極性晶面。此半極性晶面在發光二極體的應用上有兩個優點:1.增加發光面積2.增強載子發光結合的效率。此外,我們也利用脈衝式的氨氣氣流來增加晶格側向成長的速度,以控制磊晶表面的形貌。在攝氏1180度的環境中,以脈衝式氣流成長之氮化鋁磊晶層有更平整、均勻的表面,晶格品質也更佳。
In this study, we deposit buffer layers by sputtering on Si (100) and poly-AlN substrates, providing a cost-effective and compliant surface for epitaxial growth of III-nitride semiconductors. Owing to the huge mismatches in lattice constant and thermal expansion coefficient mismatch between GaN and Si substrate, the strain induced during GaN growth often leads to cracks on epi-layer’s surface, resulting in deteriorated crystal qualities. ZnO, with merely 1.8% lattice mismatch to GaN, was utilized as the buffer material to improve the crystal qualities of GaN-on-Si. By optimizing the buffer layer thickness, the undesired stain can be mitigated, deferring the formation of threading dislocations.
The poly-AlN substrate was produced with compressed AlN powder. To smoothen the surface for epitaxial growth, the poly-AlN substrate was coated with an AlN buffer layer by RF sputtering prior to the growth. According to the results of scanning electron microscopy (SEM) and x-ray diffraction (XRD), the gas mixture of Ar/N2 and sputtered AlN films thickness play important roles in the optimization of AlN epitaxy.
During the epitaxial growth, it is found that the AlN epilayer grown on the poly-AlN substrate exhibited pyramid-like semipolar facets. The semipolar facets have two advantageous properties for solid state lighting: i). Increasing the emission area. ii). Enhancing the radiative recombination efficiencies in the quantum wells. Moreover, pulsed-flow of NH3 precursor was adopted to enhance the lateral growth rate of AlN. The enhanced lateral growth was found effective in improving the smoothness and lattice qualities of the AlN epilayer. This study demonstrates an alternative route for the growth of ultraviolet light emitting diodes.
Reference
[1] S. Strite and H. Morkoç, “GaN, AlN, and InN: A review”, J. Vac. Sci. Technol., B 10, pp. 1237, 1992.
[2] H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda, “Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer”, Appl. Phys. Lett., vol. 48, pp. 353–355, 1986.
[3] S. Nakamura, “GaN growth using GaN buffer layer”, Jpn. J. Appl. Phys., 30, L1705, 1991.
[4] S. Nakamura, T. Mukai, M. Senoh and N. Iwasa, “Thermal Annealing Effects on P-Type Mg-Doped GaN Films”, Jpn. J. Appl. Phys., 31, L139, 1992
[5] A. Krost and A. Dadgar, “GaN-Based Devices on Si”, phys. Stat. sol. (a), vol 194, pp. 361, 2002.
[6] 郭子菱: 矽基LED量產在即 藍寶石基板價格戰醞釀開打. 2012/9, from http://www.mem.com.tw/article_content.asp?sn=1208310013
[7] J. Li, J.Y. Lin and H.X. Jiang, “Growth of III-nitride photonic structures on large area silicon substrates”, Applied physics letters, 88, pp. 171909, 2006.
[8] J. Park and C. C. Lee, “An electrical model with junction temperature for light-emitting diodes and the impact on conversion efficiency”, IEEE Electron Device Letters, 26, pp. 308, 2005.
[9] M. L. Tsai and K. Y. Lai, “Ceramic-based thin-film blue LEDs with high operation voltage and unsaturated output power at 1800 W/cm2”, Appl. Phys. Express, 7, pp. 022103, 2014.
[10] F. Wu, M. D. Craven, S. H. Lim, and J. S. Speck, “Polarity determination of a-plane GaN on r-plane sapphire and its effects on lateral overgrowth and heteroepitaxy”, Journal of Applied Physics, Vol. 94, No. 2, pp. 942-947, 2003.
[11] X. H. Wu, P. Fini, E. J. Tarsa, B. Heying, S. Keller, U. K. Mishra, S. P. DenBaars, and J. S. Speck, “Dislocation generation in GaN heteroepitaxy”, Journal of Crystal Growth, 189/190, pp. 231-243, 1998.
[12] H. Ishikawa, K. Yamamoto, T. Egawa, T. Soga, T. Jimbo and M. Umeno, “Thermal stability of GaN on (1 1 1) Si substrate”, Journal of Crystal Growth, 189/190, pp. 178-182, 1998.
[13] D. K. Kim and C. B. Park, “Growth of Crack-Free GaN Films on Si(111) Substrates with AlN Buffer Layers”, Journal of the Korean Physical Society, Vol. 49, No. 4, pp. 1497-1500, 2006.
[14] D. G. Zhao, J. J. Zhu, D. S. Jiang, H. Yang, J. W. Liang, X. Y. Li and H.M. Gong, “Parasitic reaction and its effect on the growth rate of AlN by metalorganic chemical vapor deposition”, Journal of Crystal Growth, 289, pp. 72-75, 2006.
[15] R. D. Vispute, V. Talyansky, S. Choopun, R. P. Sharma, T. Venkatesan, M. He, X. Tang, J. B. Halpern, M. G. Spencer, Y. X. Li, L. G. Salamanca-Riba, A. A. Iliadis and K. A. Jones, “Heteroepitaxy of ZnO on GaN and its implications for fabrication of hybrid optoelectronic devices”, Appl. Phys. Lett., Vol. 73, pp. 348-350, 1998.
[16] P. Mohanta, D. Singh, R. Kumar, Tapas Ganguli, R.S. Srinivasa and S.S. Major, “Effect of ZnO buffer layer thickness on the epitaxial growth of GaN by reactive magnetron sputtering”, Thin Solid Films, 544, pp. 238–243, 2013.
[17] H. W. Kim and N. H. Kim, “Preparation of GaN films on ZnO buffer layers by rf magnetron sputtering”, Applied Surface Science, 236, pp. 192–197, 2004.
[18] S. Xue, X. Zhang, R. Huang and H. Zhuang, “Effects of the sputtering time of ZnO buffer layer on the quality of GaN thin films”, Applied Surface Science, 254, pp. 6766–6769, 2008.
[19] C. G. Zhang, L. F. Bian, W. D. Chen and C.C. Hsu, “Effects of ZnO interlayers on thick GaN/Si film prepared by RF magnetron sputtering”, Journal of Crystal Growth, 293, pp. 258-262, 2006.
[20] R. T. Bondokov, S. G. Mueller, K. E. Morgan, G. A. Slack, S. Schujman, M. C. Wood, J. A. Smart and L. J. Schowalter, “Large-area AlN substrates for electronic applications: An industrial perspective”, Journal of Crystal Growth, 310, pp. 4020-4026, 2008.
[21] J. X. Zhang, H. Cheng, Y. Z. Chen, A. Uddin, S. Yuan, S.J. Geng and S. Zhang, “Growth of AlN films on Si (100) and Si (111) substrates by reactive magnetron sputtering”, Surface & Coatings Technology, 198, pp. 68-73, 2005.
[22] JunSun Tech: Sputtering Deposition. From http://www.junsun.com.tw/index.php/zh/2012-04-12-01-17-00/2012-04-12-01-19-01/physical-vapor-deposition.html?start=1
[23] Softimpact: Modeling of Chemical Vapor Deposition Processes. From http://www.softimpact.ru/MOIIIV.php
[24] N. Li, E. H. Park, Y. Huang, S. Wang, A. Valencia, B. Nemeth, J. Nause, and I. Ferguson, “Growth of GaN on ZnO for Solid State Lighting Applications”, Proc. of SPIE, vol 6337, pp.63370Z‐1, 2006.
[25] SURF: Scanning Electron Microscopy & Energy Dispersive X-Ray Spectroscopy. From http://www.surfgroup.be/semedx
[26] S. Xue, X. Zhang, R. Huang and H. Zhuang, “Effects of the sputtering time of ZnO buffer layer on the quality of GaN thin films”, Applied Surface Science.,vol 254, pp. 6766–6769 , 2008.
[27] K. Y. Lai, T. Paskova, V. D. Wheeler, J. A. Grenko, M. A. L. Johnson, D. W. Barlage, K. Udwary, E. A. Preble and K. R. Evans, “Excitation current dependent cathodoluminescence study of InGaN/GaN quantum wells grown on m-plane and c-plane GaN substrates”, J. Appl. Phys., 106, pp. 113104, 2009.
[28] M. Imura, K. Nakano, N.i Fujimoto, N. Okada, K. Balakrishnan, M. Iwaya, S. Kamiyama, H. Amano, I. Akasaki, T. Noro, T. Takagi and A. Bandoh, “Dislocations in AlN Epilayers Grown on Sapphire Substrate by High-Temperature Metal-Organic Vapor Phase Epitaxy”, Jpn. J. Appl. Phys., 46, pp. 1458, 2007.
[29] M. Imura, K. Nakano, N.i Fujimoto, N. Okada, K. Balakrishnan, M. Iwaya, S. Kamiyama, H. Amano, I. Akasaki, T. Noro, T. Takagi and A. Bandoh, “High-Temperature Metal-Organic Vapor Phase Epitaxial Growth of AlN on Sapphire by Multi Transition Growth Mode Method Varying V/III Ratio”, Jpn. J. Appl. Phys., 45, pp. 8639, 2006.
[30] N. Okada, N. Kato, S. Sato, T. Sumii, T. Nagai, N. Fujimoto, M. Imura, K. Balakrishnan, M. Iwaya, S. Kamiyama, H. Amano, I. Akasaki, H. Maruyama, T. Takagi, T. Noro and A. Bandoh, “Growth of high-quality and crack free AlN layers on sapphire substrate by multi-growth mode modification”, Journal of Crystal Growth, 298, pp. 349-353, 2007.
[31] R. G. Banal, M. Funato and Y. Kawakami, “Growth characteristics of AlN on sapphire substrates by modified migration-enhanced epitaxy”, Journal of Crystal Growth, 311, pp. 2834-2836, 2009.
[32] J. P. Zhang, V. Adivarahan, H. M. Wang, Q. Fareed, E. Kuokstis, A. Chitnis, M. Shatalov, J. W. Yang, G. Simin, M. A. Khan, M. Shur and R. Gaska, “Quaternary AlInGaN Multiple Quantum Wells for Ultraviolet Light Emitting Diodes”, Jpn. J. Appl. Phys., 40, pp. L921, 2001.
[33] R. G. Banal, M. Funato and Y. Kawakami, “Initial nucleation of AlN grown directly on sapphire substrates by metal-organic vapor phase epitaxy”, Appl. Phys. Lett., 92, pp. 241905, 2008.
[34] Sachie Fujikawa and H. Hirayama, “284–300nm Quaternary InAlGaN-Based Deep-Ultraviolet Light-Emitting Diodes on Si(111) Substrates”, Applied Physics Express, 4, pp. 061002, 2011.