跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林瑞晟
Rui-Sheng Lin
論文名稱: 熱管在LED上之應用
nono
指導教授: 張榮森
Zhang-rong Sen
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 124
中文關鍵詞: 熱管
外文關鍵詞: hot, heat pipe
相關次數: 點閱:17下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 藉由熱管原理中流體在高溫區受熱時,會造成密度變小,比重變 輕,因而往上升,相對的,比較冷的流體會因為密度較大,比重較重, 因而往下沉取代往上升的部分。等到較冷的流體受熱溫度升高後又會 在次往上升,此上下交替現象即是形成能量的對流傳遞。以此原理對 燈具進行熱循環式散熱。並在模擬時設定各項調變因子和參數,利用 COMSOL Multiphysics 模擬軟體進行模擬,並取得組模擬結果,分析 各組結果了解如何取得最好的熱管裝置設計以降低 LED 燈具之最高 溫度。初始設計模擬可得狀況之最高溫度為 46.9℃,所得之最佳設計 參數利用 COMSOL Multiphysics 模擬,可預測最佳設計參數狀況之 最高處溫度為 LED chip 表面處 40.8℃,鋁基板處溫度 28.2℃~30℃ LED 燈罩表面處溫度 30℃~32℃,主要燈具部分的鋁基板和 LED 燈罩 表面最高溫度獲得下降。可以大幅降低鋁基板和燈具的溫度,以達到 良好的散熱效果,希望對 LED 燈具散熱設計有所幫助。


    By the principle of the fluid of heat pipe heated in the high temperature
    area, the density and the ration become lower; therefore, the temperature
    goes higher. On the contrary, the high density and ration of the cold fluid
    goes down, replacing the rising part. The cold fluid goes up again when
    heated. The alternating phenomena lead to convective transfer of capacity
    formation. According the principle, the thermal cycling is carried out on
    lamps and lanterns. In addition, each of the modulation factor and
    parameter is set during simulation. The result of simulation is received by
    using the simulation software, COMSOL Multiphysics. To analyze the
    result of each group helps to understand how to obtain the most advanced
    heat pipe device and to lower the highest temperature and LED lamp. The

    highest temperature is 46.9℃ in the beginning of designed simulation.

    temperature of LED chip, 40.8℃, and aluminum substrate , 28.2℃~30℃,

    and the surface of lamps and lanterns, 30℃~32℃. Therefore, the highest

    temperature decreases on the aluminum substrate of the main part of lamps
    and lanterns and the surface of LED. Consequently, the temperature of
    aluminum substrate declines dramatically to attain the fine effects of heat
    dissipation, beneficial to the cooling design of LED.

    摘要 I ABSTRACT II 誌謝 III 目錄 IV 表目錄 XV 第一章 緒論 1 1.1 研究動機與文獻回顧 1 1.2 論文貢獻 4 1.3 論文架構 5 第二章 基礎理論 6 2.1 熱傳導理論 6 2.1.1 熱傳導(thermal conduction) 6 2.1.2 熱對流(thermal convection) 8 2.1.3 熱輻射(thermal radiation) 9 2.2 熱管原理及應用 10 2.2.1 熱管的原理及應用 12 第三章 研究方法 18 3.1 熱管模擬設計步驟 18 3.2 熱管應用於 LED 燈具之散熱器結構 19 3.2.1 熱管模擬設計 22 3.3 選擇控制因子與參數 23 3.3.1 表面輻射材質介紹 23 3.3.2 熱管散熱器作動液流體 24 第四章 研究結果 25 4.1 針對熱管散熱器以各控制因子進行觀察 25 4.1.1 由各控制因子作出模擬組合結果表 25 4.2 模擬結果分析 27 4.2.1 由各控制因子使用之參數模擬熱分佈結果: 27 4.3 模擬結果圖表分析 91 4.3.1 由各控制因子使用之參數模擬結果圖表分析: 91 第五章 結論與未來展望 98 5.1 結論 98 5.2 未來展望 100 參考文獻 101

    [1] Jeff Y. Tsao,“Solid-state Lighting Lamps, Chips, and Materials for Tomorrow”, IEEE Circuit & Devices Magazine, vol. 20, issue 3, pp. 28~37, 2004.
    [2] N. Holonyak and S. F. Bevacqua, “Coherent (visible) light emission from Ga(As 1-x P x ) junctions,” Appl. Phys. Lett. 1, 82-83 (1962).
    [3] C. P. Kuo, R. M. Fletcher, T. D. Osentowski, M. C. Lardizabal, M.

    G. Craford, and V. M. Robbins, “High performance AlInGaP visible light emitting diodes,” Appl. Phys. Lett. 57, 2937-2939 (1990).
    [4] H. Sugawara, M. Ishikawa, and G. Hatakoshi, “High-efficiency InAlGaP/GaAs visible light-emitting diodes,” Appl. Phys. Lett. 58, 1010-1012 (1991).
    [5] S. Nakamura, T. Mukai, and M. Senoh, “High-brightness InGaN/AlGaN double-heterostructure blue-green-light-emitting diodes,” J. Appl. Phys. 76, 8180-8191 (1994).
    [6] S. Nakamura, M. Senoh, N. Iwasa, S. Nagahama, T. Yamada, and T. Mukai, “ Superbright Green InGaN Single-Quantum-Well-Structure Light-Emitting Diodes,” Jpn. J.

    Appl. Phys. 34, L1332-L1335 (1995).

    [7] Jeong Park and Chin C. Lee, “An Electrical Model With Junction Temperature for Light-Emitting Diodes and the Impact on Conversion Efficiency”, IEEE Electron Device Letters, vol. 26, no. 5, pp. 308~310, 2005.
    [8] Eugene Hong and Nadarajah Narendran, “A Method

    for Projecting Useful Life of LED Lighting Systems”, Third International Conference on Solid State Lighting, Proceedings of SPIE, vol. 5187, pp. 93~99, 2004.
    [9] Y. Shimizu, K. Sakano, Y. Noguchi, and T. Moriguchi, “Light emitting device having a nitride compound semiconductor and a phosphor containing a garnet fluorescent material,” United States Patent, US 5998925 (1999).
    [10] Nadarajah Narendran and Yimin Gu, “Life of LED-Based White Light Sources”, IEEE/OSA Journal of Display Technology, vol. 1, no. 1, pp. 167~171, 2005.
    [11] 李冠賢,"垂直放置鰭片之自然對流熱傳性能實驗研究 ",國

    立中央大學機械工程學系碩士論文,2010。

    [12] S. H. Park, Robust Design and Analysis for

    Quality Engineering, Chapman & Hall, pp. 25-58, 1996.
    [13] Incropera DeWitt 原著,侯順雄、王松浩、張仲卿譯者,「熱

    傳遞」,高立圖書,民國 96 年 10 月。

    [14] 林志勳, "應用田口法開發LED燈具設計", 國立中央大學

    光電科學與工程學系碩士論文,2009

    [15] Aibara, T., 1968, “Natural Convective Heat Transfer in Vertical Parallel Fins of Rectangular Profiles,” The Japan Society of Mechanical Engineers (JSME), Vol. 34. Quoted in Yeh, L. T., Chu, R. C., 2002, Thermal
    Management of Microelectronic Equipment, ASME Press, New York.
    [16] Güvenç, A., and Yüncü, H., 2001, “An Experimental Investigation on Performance of Fins on a Horizontal Base in Free Convection Heat Tr- ansfer,” Heat and Mass Transfer, Vol. 37, pp. 409-416
    [17] Ostrach, S., 1953, “An Analysis of Laminar Free Convection Flow and Heat Transfer about a Flat Plate Parallel to the Direction of the Generating Body Force,” National Advisory Committee for Aeronautics, Report 1111.

    QR CODE
    :::