| 研究生: |
呂冠學 KUAN-HSUEH LU |
|---|---|
| 論文名稱: |
微波及毫米波倍頻器、多相位高功率高效率壓控振盪器及鎖相迴路之研製 Design of Microwave and Millimeter-Wave Frequency Multiplier, Multi-Phase High Power High Efficiency Voltage-controlled Oscillator and Phase-locked Loop |
| 指導教授: |
張鴻埜
Hong-Yeh Chang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 158 |
| 中文關鍵詞: | 振盪器 、低相位雜訊 、倍頻器 、鎖相迴路 、四相位 、高功率 |
| 外文關鍵詞: | Oscillator, Low phase noise, Doubler, Phase-locked loop, Quadrature, High power |
| 相關次數: | 點閱:13 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要提出微波及毫米波訊號源關鍵電路,內容包含二個K頻段的頻率倍頻器、一個X頻段的四相位壓控振盪器及一個X頻段的鎖相迴路。
第二章使用穩懋0.15 μm砷化鎵之增強式應變式異質接面高遷移率電晶體製程及轉導增強式(Gm-boosted)技術在K頻段倍頻器(K-band frequency doubler)之研製。電路架構分成差動輸入(differential input)及單端輸入(single-end input)兩部分介紹,轉導增強式技術是利用增強輸入端的電壓擺幅,以減少輸入端的驅動功率,提昇整體轉換增益。第一部分介紹單端輸入共源級轉導增強式倍頻器,在量測輸入0 dBm時,可達到0.9 dB的轉換增益,3 dB輸出頻寬範圍為37到43 GHz,3 dB頻寬比為15%。在38 GHz輸出頻率時,量測輸出飽和功率等於0 dBm,晶片面積為0.9×0.8 mm2。第二部分介紹差動輸入共閘級轉導增強式倍頻器,同時使用被動式電容交叉耦合技術,主動式共閘級轉導增強式為增益提昇的主要來源 ,而被動式電容交叉耦合在不額外增加直流功耗下,額外提昇本身轉導級的增益,詳細的設計流程在此呈現,包含比較共源級及共閘級轉導提昇的頻寬及設計考量。在量測差動輸入7 dBm達到3.3 dB的轉換增益及27.8%的3 dB頻寬比(3 dB頻寬範圍為31到41 GHz),在38 GHz輸出頻率時,量測輸出飽和功率等於7 dBm,晶片面積為1.2×0.8 mm2。
第三章提出應用在X頻段的低相位雜訊高功率高效率四相位疊接迴路型壓控振盪器,使用台積電0.18 μm互補式金屬氧化物半導體製程設計實現。電路利用交叉耦合(cross-coupled)將兩個共源共閘(cascode)疊接迴路型振盪器接成差動壓控振盪器,並利用背閘極將兩個差動壓控振盪器進行四相位耦合。其中,背閘極耦合技術減少額外的直流消耗及降低相位雜訊,詳細的設計流程、四相位分析和相位雜訊計算也在此呈現。量測輸出功率和直流轉換效率分別為10 dBm和11.2%,振盪頻率為9.3到9.5GHz,相位誤差和振幅誤差為0.26˚及0.2 dB,因為使用具有高品質因子(quality factor)的T型阻抗匹配網路,所以大幅降低振盪器的相位雜訊,量測相位雜訊在1 MHz頻率偏移時可優於-125 dBc/Hz,晶片面積為1.3×1.28 mm2。
第四章將論文所提出X頻段四相位壓控振盪器整合至鎖相迴路(PLL)系統中, 鎖相迴路包含四相位壓控振盪器、相位頻率偵測器、電荷幫浦、迴路濾波器、兩級電流模式除頻器及四級單相位時序除頻器。電路是使用台積電0.18 μm互補式金屬氧化物半導體製程設計並實現,總除數為64,頻率範圍為9.28至9.32 GHz。 藉由低抖動(jitter)的參考頻率及低雜訊的四相位壓控振盪器結合至鎖相迴路中,使鎖相迴路具有穩定及低相位雜訊的特性。量測相位雜訊在1 MHz頻率偏移時為-108.7 dBc/Hz,量測方均根值(rms)抖動(jitter)為466 fs,量測雜訊抑制(spur suppression)小於-80 dBc,此電路晶片面積為1.5×1.6 mm2。最後,在第五章總結此研究成果。
In this thesis, several key components of microwave and millimeter-wave signal sources are presented, including two K-band frequency doublers, an X-band quadrature voltage-controlled oscillator and an X-band phase locked-loop (PLL).
In Chapter 2, the two K-band frequency doublers using Gm-boosted technique in WIN 0.15-μm GaAs E-mode pHEMT are introduced. The circuit design consists of a differential input frequency doubler and a single-end input frequency doubler. When the Gm-boosted technique is employed in the frequency doubler designs, the input driving power decreases and the conversion gain enhances because of the boosted input voltage swing. The proposed single-end input frequency doubler exhibits a conversion gain of 0.9 dB when input power is 0 dBm, a fractional bandwidth of 15% and a fractional bandwidth range from 37 to 43 GHz. The maximum saturated output power (Psat) is 0 dBm at 38-GHz output frequency. Meanwhile, the capacitive cross-coupling technique is also adapted for the differential input frequency doubler. The common-gate (CG) Gm-boosted stage provides gain dominantly and the cross-coupling capacitor further boosts the gain of the doubly Gm-boosted stage without adding additional dc power consumption. The detail design procedure is also presented. The comparisons of the bandwidth using Gm-boosted technique between a common-source (CS) Gm-boosted stage and a CG Gm-boosted stage are addressed. The proposed differential input Gm-boosted stage frequency doubler exhibits a conversion gain of 3.3 dB when input power is 7 dBm, a fractional bandwidth of 27.8% and the fractional bandwidth range from 31 to 41 GHz. The maximum output Psat is 7 dBm at 38-GHz output frequency.
In Chapter 3, the X-band low phase noise high power high efficiency quadrature voltage-controlled oscillator (QVCO) using TSMC 0.18-μm CMOS is proposed. Two cascade oscillators are combined using cross-coupled technique. Meanwhile, the coupling between the two differential VCOs is designed using a back-gate coupling topology for the QVCO. DC power and phase noise can be reduced due to the back-gate coupling topology. The detail design procedure, quadrature analysis and phase noise calculation are addressed. The proposed high power high efficiency QVCO exhibits an output power of 10 dBm and a dc-to-RF conversion efficiency of 11.2%. The measured tuning range is 200 MHz (from 9.3 GHz to 9.5 GHz). The measured phase error is 0.26˚ and amplitude error is 0.2 dB. The phase noise is reduced due to using TEE matching network experiencing high quality factor. The measured phase noise is -125 dBc/Hz at 1-MHz offset. The chip size is 1.3×1.28 mm2.
In Chaptor 4, the proposed QVCO merged with PLL is presented. The building blocks of the PLL include a QVCO, a phase-frequency detector, a charge pump, a loop filter and two-stage common-mode logic dividers and four-stage true single phase clocking dividers. The PLL is implemented using TSMC 0.18-μm CMOS process. The measured frequnecy is from 9.28 GHz to 9.32 GHz. The measured phase noise is -108.7 dBc/Hz at 1-MHz offset with an rms jitter of 466 fs. The measured spur suppression is lower than -80 dB. The chip size is 1.3×1.28 mm2.
Finally, the conclusion is given in Chaptor 5.
[1] P. R. Troyk and G. A. DeMichele, “Inductively-coupled power and data link for neural prostheses using a class-E oscillator and FSK modulation,” in Proc. IEEE 25th EMBS Conf., vol. 4, pp. 3376–3379, Sept. 2003.
[2] J.-H Song, C. Cui, and S.-K. Kim, “A low-phase-noise 77-GHz FMCW radar transmitter with a 12.8-GHz PLL and a ×6 frequency multiplier,” IEEE Microw. Wireless Compon. Lett., vol. 26, no. 7, pp. 540–542, Jul. 2016.
[3] K.-Y Lin, J.-Y. Huang, J.-L. Kuo, C.-S. Lin, and H. Wang, “A 14-23 GHz CMOS MMIC distributed doubler with a 22-dB fundamental rejection,” in IEEE MTT-S Int. Microw. Symp. Dig., pp. 1477-1480, Jun. 2008.
[4] F. Ellinger and H.Jackel, “Ultracompact SOI CMOS frequency doubler for low power applications at 26.5-28.5 GHz,” IEEE Microw. Wireless Compon. Lett., vol. 14, no. 2, pp. 53–55, Feb. 2004.
[5] H. Zirath, T. Masuda, R. Kozhuharov, and M. Ferndahl, “Development of 60 GHz front-end circuits for a high-data-rate communication system,” IEEE J. Solid-State Circuits, vol. 39, no. 10, pp. 1640–1649, Oct. 2004.
[6] Y. Liu, T. Yang, Z. Yang, and J. Chen, “A 3-50 GHz ultra-wideband pHEMT MMIC balanced frequency doubler,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 9, pp. 629–631, Sept. 2008.
[7] C.-C Weng, Z.-M Tsai, and H. Wang, “A K-band miniature, broadband, high output power HBT MMIC balanced doubler with integrated balun,” in Proc. Eur. Micro. Integr. Circuits Conf., vol. 3, pp. 1–3, Oct. 2005.
[8] D.-W. Kang, D.-H Baek, S.-H. Jeon, J.-W Park, and S. Hong, “A 14-23 GHz CMOS MMIC distributed doubler with a 22-dB fundamental rejection,” in IEEE MTT-S Int. Microw. Symp. Dig., pp. 107-110, Jun. 2003.
[9] B. Razavi, RF Microelectronics, Prentice Hall, 1998.
[10] A. S. Sedra and K. C. Smith, Microelectronic Circuits, Oxford, New York, pp. 1112-1113, 1998.
[11] F. Maloberti and M. Signorelli, “Quadrature waveform generator with enhanced performances,” Symposium on VLSI Circuits Digest of Technical Papars, pp. 56-57, 1998.
[12] M. Tormanen and H. Sjoland, “A 26-GHz LC-QVCO in 0.13-m CMOS,” in Proc. Asia–Pacific Microw. Conf., pp. 1769–1772, Dec. 2007.
[13] S. Hackl, J. Bock, G. Ritzberger, M. Wurzer, and A. L. Scholtz, “A 28-GHz monolithic integrated quadrature oscillator in SiGe bipolar technology,” IEEE J. Solid-State Circuits, vol. 38, no. 1, pp. 135–137, Jan. 2003.
[14] M. Tormanen and H. Sjoland, “A 24-GHz LC-QVCO in 130-nm CMOS using 4-bit switched tuning,” in Proc. IEEE Int. Microelectron. Conf., Sharjah, U.A.E., pp. 462–465, Dec. 2008.
[15] M. Hossain and A. C. Carusone, “20 GHz low power QVCO and de-skew techniques in 0.13 m digital CMOS,” in Proc. IEEE Custom Integr. Circuits Conf., pp. 447–450, Sept. 2008.
[16] M. Sanduleanu and E. Stikvoort, “Highly linear, varactor-less, 24-GHz IQ oscillator,” in IEEE RFIC Symp. Dig., pp. 577–580, Jun. 2005.
[17] M. Tormanen and H. Sjoland, “A 24-GHz quadrature receiver front-end in 90-nm CMOS,” in Proc. IEEE Asia–Pacific Microw. Conf., pp. 1152–1155, Dec. 2009.
[18] S. B. Shin, H. C. Choi, and S.-G. Lee, “Source-injection parallel coupled LC-QVCO,” in Electron. Lett., vol. 39, no. 14, pp. 1059–1060, Jul. 2003
[19] S. J. Yun, D. Y. Yoon, and S. G. Lee, “A complementary CMOS LC quadrature oscillator,” IEICE Trans. Electron., vol. E91-C, no. 11, pp. 1806–1810, Nov. 2008.
[20] H. Kim, C. Cha, S. Oh, M. Yang, and S. Lee, “A very low-power quadrature VCO with back-gate coupling,” IEEE J. Solid-State Circuits, vol. 39, no. 6, pp. 952–955, Jun. 2004.
[21] R. C. H. v. d. Beek, C. S. Vaucher, D. M. W. Leenaerts, E. A. M. Klumperink, and B. Nauta, “A 2.5-10-GHz clock multiplier unit with 0.22-ps RMS jitter in standard 0.18-µm CMOS,” IEEE J. Solid-State Circuits, vol. 39, no. 11, pp. 1862–1872, Nov. 2004.
[22] D. Murphy, Q. J. Gu, Y.-C. Wu, H.-Y. Jian, Z. Xu, A. Tang. F. Wang, and M.-C. F. Chang, “A low phase noise, wideband and compact CMOS PLL for use in a heterodyne 802.15.3c transceiver,” IEEE J. Solid-State Circuits, vol. 39, no. 11, pp. 1606–1617, Jul. 2011.
[23] Z. Xu, Q. J. Gu, Y.-C. Wu, H.-Y. Jian and M.-C F. Chang, “A 70-78 integrated CMOS frequency synthesizer for W-band satellite communications,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 12, pp. 3206–3218, Dec. 2011.
[24] G.-Y. Chen, S.-H. Weng, H.-Y. Chang, and Y.-M. Hsin, “A K-band high performance frequency quadrupler using CG-CS balanced configuration in E/D-mode PHEMT Process,” in Proc. Eur. Micro. Integr. Circuits Conf., pp. 249–252, Oct. 2014.
[25] G.-Y. Chen, H.-Y. Chang, S.-H. Weng, and Y.-M. Hsin, “A Ka-band broadband active frequency doubler using CB-CE balanced configuration in 0.18-µm SiGe BiCMOS process,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2012.
[26] I. R. Chamas and S. Raman, “Analysis, design, and X-band implementation of a self-biased active feedback Gm-boosted common-gate CMOS LNA,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 3, pp. 542–551, Mar. 2009.
[27] W. Zhou, X. Li, S. Shekhar, S. H. K. Embabi, J. P. de Gyvez, D. J. Allstot, and E. Sanchez-Sinencio, “A capacitor cross-coupled common-gate low-noise amplifier,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 52, no. 12, pp. 875–879, Dec. 2005.
[28] X. Li, S. Shekhar, and D. J. Allstot, “Gm-boosted common-gate LNA and differential Colpitts VCO/QVCO in 0.18-µm CMOS,” IEEE J. Solid-State Circuits, vol. 40, no. 12, pp. 2609–2619, Dec. 2005.
[29] I. R. Chamas and S. Raman, “Analysis, design, and X-band implementation of a self-biased active feedback Gm-boosted common-gate CMOS LNA,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 3, pp. 542-551, Mar. 2009.
[30] F. Belmas, F. Hameau, and J. Fournier, “A low power inductorless LNA with double Gm enhancement in 130 nm CMOS,” IEEE J. Solid-State Circuits, vol. 47, no. 5, pp. 1094-1103, Mar. 2012.
[31] G. Gonzalez, Microwave Transistor Amplifiers Analysis and Design, Prentice Hall, 1997.
[32] J. M. Rollet, “Stability and power gain invariants of linear two-ports,” IRE Trans. on Circuit Theory, vol. CT-9, no. 5, pp. 29-32, 1962.
[33] M. L. Edwards and J. H. Sinsky, “A new criterion for linear 2-port stability using a single geometrically derived parameter,” IEEE Trans. Microw. Theory Tech., vol. 40, no. 12, pp. 2303-2311, Dec. 1992.
[34] R. J. Weber, “Even mode and odd mode stability,” 40th Midwest Symposium on Circuits and Systems, pp. 607-610, Aug. 1997.
[35] E. L. Tan, “Rollett-based single-parameter criteria for un-conditional stability of linear two-ports,” IEE Microw. Antennas Propag., vol. 5, no. 1, pp. 30-37, Jan. 2011.
[36] J. J. Hung, T. M. Hancock, and G. M. Rebeiz, “High power high efficiency SiGe Ku and Ka-band balanced frequency doublers,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 2, pp. 754–761, Feb. 2005.
[37] Y. C. Li, F.-H. Huang and Q. Xue, “20–40 GHz dual-gate frequency doubler using 0.5 μm GaAs pHEMT technology,” in Electronics Letters, vol. 50, no. 10, pp. 758–759, May 2014.
[38] S. Hackl and J. Bock, “42 GHz active frequency doubler in SiGe bipolar technology,” in Proc. 3rd Int. Microwave and Millimeter Wave Technology Conf. Papers, pp. 54–57, Aug. 2002.
[39] 陳冠宇,“微波毫米寬頻高效率倍器之研製”,國立中央大學電機工程研究所博士論文,民國 103 年6 月。
[40] S. Wang and C.-T. Chang, “K-band CMOS frequency doubler with high fundamental rejection,” in Electronics Letters, pp. 1211–1212, Aug. 2014.
[41] M. Ferndahl, B. M. Motlagh, and H. Zirath, “40 and 60 GHz frequency doublers in 90-nm CMOS,” in IEEE MTT-S Int. Microw. Symp. Dig., pp. 179–182, Jun. 2004.
[42] M. Mizan, D. Sturzbecher, T. Higgins, and A. Paolella, “An X-band, high power dielectric resonator oscillator for future military systems,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control., vol. 40, no. 5, pp. 483–487, Sept. 1993.
[43] D. Shen, L. Jin, and L.L. Zhou, “A L-band transceiver front-end for ADS-B system,” Int. Workshop on Microwave and Milimeter Wave Circuits and System Technology (MMWCST), 19-20 Apr. 2012, pp. 1–3.
[44] Y.-S. Lin, C.-C. Wang, P.-W. Yu, J.-H. Lee, and S.-S. Lu, “Low-phase-noise 0.63-V, 1.7-mW, 11.55-GHz quadrature voltage controlled oscillator with intrinsic-tuned technique in 0.18-μm complimentary metal oxide semi-conductor,” IET Microw. Antennas Propag., vol. 6, no. 13, pp. 1437–1442, May. 2009.
[45] J. Lin, Y. K. Chen, D. A. Humphrey, R. A. Hamm, R. J. Malik, Al Tate, R. F. Kopf, and R. W. Ryan, “Ka-band monolithic InGaAs/InP HBT VCO’s in CPW structure,” IEEE Micro. Guided Wave Lett., vol. 5, no. 11, pp. 379–381, Nov. 1995.
[46] E. Juntunen, D. Dawn and J. Laskar, “High-power, high-efficiency CMOS millimetre-wave oscillators,” IET Trans. Microw., Antennas, Propag., pp. 1158–1163, Aug. 2012.
[47] E. Juntunen, D. Dawn and J. Laskar, “A high-efficiency, highpower millimeter-wave oscillator using a feedback class-E power amplifier in 45-nm CMOS,” IEEE Microw. Wireless Compon. Lett., pp. 430–432, 2011.
[48] C.-Y. Kim, J. Yang, D.-W. Kim, and S. Hong, “A K-band quadrature VCO based on asymmetric coupled transmission lines,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2008, pp. 363–366.
[49] K. L. Kotzebue and W. J. Parrish, “The use of large signal S-parameters in microwave oscillator design,” in Proc. 1975 Int. Microw. Symp. on Circuit and Systems.
[50] K. M. Johnson, “Large Signal GaAs MESFET oscillator design,” IEEE Trans. Microw. Theory Tech., vol. 27, no. 3, pp. 217–227, Mar. 1979.
[51] S. Jeon, A. Suarez and D. B. Rutledge, “Nonlinear design technique for high-power switching-mode oscillators,” IEEE Trans. Microw. Theory Tech., vol. 54, pp. 3630-3640, Oct. 2006.
[52] D. B. Lesson, “A simple model of feedback oscillator noise spectrum,” Proc. IEEE., vol. 54, pp. 329-330, Feb. 1966.
[53] 李文賓,“高功率高效率振盪器研製”,國立中央大學電機工程研究所碩士論文,民國 100 年7 月。
[54] H.-Y. Chang, Y.-S. Wu, and Y.-C. Wang, “A 38% tuning bandwidth low phase noise differential voltage controlled oscillator using a 0.5 μm E/D-PHEMT process,” IEEE Microw. Wireless Common. Lett., vol. 19, no. 7, pp. 467–496, Jul. 2009.
[55] “Optimization of quadrature modulator performance,” Technical Notes and Articles, RF Micro Devices Inc.
[56] 邱垣達,“低功耗低相位雜訊差動及四相位單晶微波積體電路壓控振盪器之研究”,國立中央大學電機工程研究所碩士論文,民國100年6月。
[57] 廖彥涵,“微波毫米波寬頻振盪器與鎖相迴路之研製”,國立中央大學電機工程研究所碩士論文,民國102年3月。
[58] B. Liang, “Analyze and design 10-GHz 0.8-VDD -117dBc/Hz quadrature LC-VCO in 120 nm CMOS technology,” IEEE Green Circuits and Systems, pp. 420– 423, 2010.
[59] S. Ko, “20 GHz Integrated CMOS frequency sources with a quadrature VCO using transformers,” in 2004 IEEE RFIC Symp. Dig., Jun. 2004, pp. 269–272.
[60] C. H. Lin, “A low phase noise low dc power quadrature voltage-controlled oscillator using a 0.18-µm CMOS process,” in Eur. Microw. Integrated Circuits Conf., 2009 (EuMIC), Sept. 28-29, 2009, pp. 112-115.
[61] I. S. Shen and C. F. Jou, “A X-Band capacitor-coupled QVCO using sinusoidal current bias technique,” Int. Solid-State Circuits Conf. in Proc. (ISSCC), 2012, pp. 318–328.
[62] 林紀賢,“注入鎖定非線性單晶微波積體之研究”,國立中央大學電機工程研究所博士論文,民國101年11月。
[63] J. Lee and B. Razavi, “A 40-GHz frequency divider in 0.18-µm CMOS technology,” IEEE J. Solid-State Circuits, vol. 39, no. 4, pp. 594–601, Apr. 2004.
[64] H. R. Rategh and T. H. Lee, “Superharmonic injection-locked frequency dividers,” IEEE J. Solid-State Circuits, vol. 34, no. 6, pp. 813–821, Jun. 1999.
[65] Y. Mo, E. Skafidas, R. Evans, and I. Mareels, “Superharmonic injection-locked frequency dividers,” IEEE ICCSC 2008, pp. 812–815.
[66] Z. Deng and A. M. Niknejad, “The speed-power trade-off in the design of CMOS true-single-phase-clock dividers,” IEEE J. Solid-State Circuits, vol. 45, no. 11, pp. 2457–2465, Nov. 2010.
[67] M. Soyuer and R. G. Meyer, “Frequency limitations of a conventional phase-frequency detector,” IEEE J. Solid-State Circuits, vol. 25, no. 4, pp. 1019–1022, Aug. 1990.
[68] 劉深淵及楊清淵,“鎖相迴路”,民國97年2月。
[69] B.-Y. Lin, and S.-I. Liu, “A capacitor cross-coupled common-gate low-noise amplifier,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 58, no. 10, pp. 617–621, Oct. 2011.
[70] K. Tsutsumi et al., “Low phase noise Ku-band PLL-IC with -104.5 dBc/Hz at 10-kHz offset using SiGe HBT ECL PFD,” in Proc. Asia–Pacific Microw. Conf., pp. 373–376, Dec. 2009.
[71] S.-Y. Yang, W.-Z. Chen, and T.-Y. Lu, “A 7.1 mw, 10 GHz all digital frequency systhesizer with dynamically reconfigured digital loop filter in 90 nm CMOS technology,” IEEE J. Solid-State Circuits, vol. 45, no. 3, pp. 578–586, Mar. 2010.
[72] J.-Y. Lee, “A 9.1-to-11.5-GHz Four-Band PLL for X-Band Satellite & Optical Communication Applications,” in IEEE RFIC Symp. Dig., pp. 338–339, Jun. 2007.
[73] I.-W. Tseng and J.-M. Wu, “An 18.7mW 10-GHz phase-locked loop circuit in 0.13-µm CMOS,” VLSI-DAT ’09, pp. 227-230.
[74] J.F Huang, “Chip Design of 10 GHz Low Phase Noise and Small Chip Area PLL,” IEEE Communications and Networking in China (CHINACOM), pp. 276–280, Aug. 2013.
[75] T.-H. Lin, “An Agile VCO Frequency Calibration Technique for a 10-GHz CMOS PLL,” IEEE J. Solid-State Circuits, vol. 42, no. 2, Feb. 2007.
[76] R. C. H. van de Beek, C. S. Vaucher, D. M. W. Leenaerts, Eric A. M. Klumperink, and B. Nauta, “A 2.5-10-GHz clock multiplier unit with 0.22-ps RMS jitter in standard 0.18-µm CMOS,” IEEE J. Solid-State Circuits, vol. 39, no. 11, Nov. 2004.
[77] N. Pavlovic, J. Gosselin, K. Mistry, and D. Leenaerts, “A 10 GHz frequency synthesizer for 802.11a in 0.18-µm CMOS,” in Proc. IEEE Eur. Solid-State Circuits Conf., pp. 367-370, Sept. 2004.
[78] A. Rofougaran, J. Rael, M. Rofougaran and A. Abidi, “A 900 MHz LC-oscillator with quadrature outputs,” in 1996 Int. Solid-State Circuits Conf. Dig., pp. 392-393.
[79] 張盛富及張嘉展,“無限通訊射頻晶片模組設計-射頻晶片篇”,民國97年6月。
[80] X. Gao, E. A. M. Klumperink, P. F. J. Geraedts, and B. Nauta, “Jitter analysis and a benchmarking figure-of merit for phase-locked loops,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 56, no. 2, pp. 117–121, Feb. 2009.
[81] 陳仕鴻,“數位無線通訊系統應用之低電壓高功率砷化鎵場效電晶體研究”,國立交通大學材料科學與工程系博士論文,民國91年11月。