| 研究生: |
李宥霆 Yu-Ting Lee |
|---|---|
| 論文名稱: |
白光干涉術之相位型生物感測器 Phase-Type Biosensor with White Light Interferometry |
| 指導教授: |
郭倩丞
Chien-Cheng Kuo |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 60 |
| 中文關鍵詞: | 白光干涉儀 、生物感測器 、免疫球蛋白G |
| 相關次數: | 點閱:17 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文使用掃描式白光干涉儀作為光學轉換器並應用於生物感測器,利用白光干涉技術搭配快速傅立葉轉換法將時域的干涉光強訊號轉換為頻域的傅立葉相位頻譜。利用反射相位作為分析的依據,將生物辨識元件與分析物視為薄膜層,當不同濃度的分析物進行反應時,等效折射率會隨反應濃度的分析物數量而改變,根據相位與折射率的關係,探討分析物在不同濃度時的實驗結果。
針對在測量時可能產生的誤差進行調整,其中包含傾斜角度的影響及對反應前後相位差的基準點不同進行改善。在測量結果中,本實驗將最大波數代入擬合的線性方程式中,計算出反應前後相位差的變化量,將此變化量稱為截距差,並以此作為等效折射率變化的標準。採用生醫檢測上的非線性回歸模型,對8個不同濃度的實驗結果進行擬合,驗證實驗結果的合理性,其R平方值為0.9993,利用此模型計算本系統的檢測極限(Limit of Detection)可達到0.019 ng∙mL^(-1)。
This thesis aims to detect biosensor by using White Light Scanning Interferometer (WLSI) as the optical transducer. The technology which combines White Light Interferometry and Fast Fourier Transform changes the signal of interference light in time domain to the spectrum of Fourier phase in frequency domain. To discuss the result when analyte responses at different concentration, the analysis of experiment is based on the reflective phase and viewing biorecognition element and analyte as two thin films. When analyte is responding with biorecognition element, the effective refractive index of two thin films will change by the amount of analyte at different concentration, then getting result by the relationship between refractive index and phase.
Adjusting two possible errors when measuring in experiment, including the effect of tilt and the base point of phase difference before and after reaction are different. In the experimental result, substituting maximum wave number into equation of linear regression to calculate the variable quantities of phase difference before and after reaction. Viewing the variable quantity as the standard of effective refractive index changes, and called the variable quantity as the Intercept Difference.
To verify the reasonableness of experimental result uses the nonlinear regression model with bioanalysis to fit the result at eight different concentrations. The R squared is 0.9993, and the limit of detection (LOD) is 0.019 ng∙mL^(-1) by calculating from this model.
1. N. Bhalla, P. Jolly, N. Formisano, and P. Estrela, "Introduction to biosensors," Essays Biochem. 60, 1–8 (2016).
2. W. R. Heineman and W. B. Jensen, "Leland C. Clark Jr. (1918–2005)," Biosensors and Bioelectronics 21, 1403–1404 (2006).
3. P. Damborský, J. Švitel, and J. Katrlík, "Optical biosensors," Essays Biochem. 60, 91–100 (2016).
4. T. Tabbakh, N. Alotaibi, Z. A. Almusaylim, S. Alabdulkarim, N. Z. Jhanjhi, and N. B. Darwish, Optoelectronics and Optical Bio-Sensors (IntechOpen, 2021).
5. M. Pirzada and Z. Altintas, "Recent Progress in Optical Sensors for Biomedical Diagnostics," Micromachines 11, 356 (2020).
6. T. D. Martins, A. C. C. Ribeiro, H. S. de Camargo, P. A. da C. Filho, H. P. M. Cavalcante, and D. L. Dias, New Insights on Optical Biosensors: Techniques, Construction and Application (IntechOpen, 2013).
7. D. Rho, C. Breaux, and S. Kim, "Label-Free Optical Resonator-Based Biosensors," Sensors 20, 5901 (2020).
8. E. Luan, H. Shoman, D. M. Ratner, K. C. Cheung, and L. Chrostowski, "Silicon Photonic Biosensors Using Label-Free Detection," Sensors 18, 3519 (2018).
9. K. Li, S. Wang, L. Wang, H. Yu, N. Jing, R. Xue, and Z. Wang, "Fast and Sensitive Ellipsometry-Based Biosensing," Sensors 18, 15 (2017).
10. P. Salvo, F. M. Vivaldi, A. Bonini, D. Biagini, F. G. Bellagambi, F. M. Miliani, F. Di Francesco, and T. Lomonaco, "Biosensors for Detecting Lymphocytes and Immunoglobulins," Biosensors 10, 155 (2020).
11. B.-T. Wang and Q. Wang, "An interferometric optical fiber biosensor with high sensitivity for IgG/anti-IgG immunosensing," Optics Communications 426, 388–394 (2018).
12. Z. Guo, Y. Qin, P. Chen, J. Hu, Y. Zhou, X. Zhao, Z. Liu, Y. Fei, X. Jiang, and X. Wu, "Hyperboloid-Drum Microdisk Laser Biosensors for Ultrasensitive Detection of Human IgG," Small 16, 2000239 (2020).
13. M.-C. Li, Y.-F. Chang, H.-Y. Wang, Y.-X. Lin, C.-C. Kuo, J. Annie Ho, C.-C. Lee, and L.-C. Su, "An innovative application of time-domain spectroscopy on localized surface plasmon resonance sensing," Sci. Rep. 7, 44555 (2017).
14. L. Zhu, Y. Dong, Z. Li, and X. Zhang, "A Novel Surface Recovery Algorithm for Dual Wavelength White LED in Vertical Scanning Interferometry (VSI)," Sensors 20, 5225 (2020).
15. Y. Fu, G. Pedrini, and X. Li, "Interferometric Dynamic Measurement: Techniques Based on High-Speed Imaging or a Single Photodetector," The Scientific World Journal 2014, 232906 (2014).
16. G. Vidarsson, G. Dekkers, and T. Rispens, "IgG Subclasses and Allotypes: From Structure to Effector Functions," Front. Immunol. 5, 520 (2014).
17. Wikipedia, "Immunoglobulin G," https://en.wikipedia.org/wiki/Immunoglobulin_G
18. H. W. Schroeder and L. Cavacini, "Structure and function of immunoglobulins," Journal of Allergy and Clinical Immunology 125, S41–S52 (2010).
19. J. S. Kanger, V. Subramaniam, P. H. J. Nederkoorn, and A. Ymeti, "A Fast and Sensitive Integrated Young Interferometer Biosensor," Advanced Photonic Structures for Biological and Chemical Detection 265–295 (2009).
20. A. Kussrow, C. S. Enders, and D. J. Bornhop, "Interferometric Methods for Label-Free Molecular Interaction Studies," Anal. Chem. 84, 779–792 (2012).
21. D. Malacara, ed., Optical Shop Testing, 3rd ed, Wiley Series in Pure and Applied Optics (Wiley-Interscience, 2007).
22. G. Y. Di Veroli, C. Fornari, I. Goldlust, G. Mills, S. B. Koh, J. L. Bramhall, F. M. Richards, and D. I. Jodrell, "An automated fitting procedure and software for dose-response curves with multiphasic features," Sci. Rep. 5, 14701 (2015).
23. S. A. Nummer, A. J. Weeden, C. Shaw, B. K. Snyder, T. B. Bridgeman, and S. S. Qian, "Updating the ELISA standard curve fitting process to reduce uncertainty in estimated microcystin concentrations," MethodsX 5, 304–311 (2018).
24. M. Alhajj and A. Farhana, "Enzyme Linked Immunosorbent Assay," in StatPearls (StatPearls Publishing, 2021).
25. S. Sakamoto, W. Putalun, S. Vimolmangkang, W. Phoolcharoen, Y. Shoyama, H. Tanaka, and S. Morimoto, "Enzyme-linked immunosorbent assay for the quantitative/qualitative analysis of plant secondary metabolites," J. Nat. Med. 72, 32–42 (2018).
26. G. Sapkal, A. Shete-Aich, R. Jain, P. D. Yadav, P. Sarkale, R. Lakra, S. Baradkar, G. R. Deshpande, D. Mali, B. N. Tilekar, T. Majumdar, H. Kaushal, Y. Gurav, N. Gupta, S. Mohandas, K. Deshpande, O. Kaduskar, M. Salve, S. Patil, S. Gaikwad, A. P. Sugunan, M. Ashok, S. Giri, J. Shastri, P. Abraham, and R. R. Gangakhedkar, "Development of indigenous IgG ELISA for the detection of anti-SARS-CoV-2 IgG," Indian J. Med. Res. 151, 444–449 (2020).
27. R. C. May, H. Chu, J. G. Ibrahim, M. G. Hudgens, A. C. Lees, and D. M. Margolis, "Change-Point Models to Estimate the Limit of Detection," Stat. Med. 32, 4995–5007 (2013).
28. D. A. Armbruster and T. Pry, "Limit of Blank, Limit of Detection and Limit of Quantitation," Clin. Biochem. Rev. 29, S49–S52 (2008).
29. Á. Lavín, J. de Vicente, M. Holgado, M. F. Laguna, R. Casquel, B. Santamaría, M. V. Maigler, A. L. Hernández, and Y. Ramírez, "On the Determination of Uncertainty and Limit of Detection in Label-Free Biosensors," Sensors 18, 2038 (2018).
30. D. Martens and P. Bienstman, "Study on the limit of detection in MZI-based biosensor systems," Sci. Rep. 9, 5767 (2019).
31. Wikipedia, "Normal distribution," https://en.wikipedia.org/wiki/Normal_distribution