跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳浚廷
Jyun-Ting Chen
論文名稱: 一個在T*RP2上的單調拉格朗日環面
A monotone Lagrangian torus in T*RP2
指導教授: 姚美琳
Mei-Lin Yau
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系
Department of Mathematics
畢業學年度: 100
語文別: 英文
論文頁數: 35
中文關鍵詞: 拉格朗日環面不可置換單調
外文關鍵詞: non-displaceable, monotone, Lagrangian torus
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Poterovich在T^* S^2上構造了一個單調拉格朗日環面,Albers和Frauenfelder接著證明了這個環面是不可置換的(non-displaceable)。我們利用類似的構造方式在T^* RP^2上造了一個單調拉格朗日環面,並提出一些觀察,試著解釋這個環面是不可置換的可能性。


    Leonid Poterovich constructed a Lagrangian torus in T^* S^2 and then Albers and Frauenfelder proved that Lagrangian torus is non-displaceable. We use similar construction to construct a monotone Lagrangian torus in T^* RP^2. Moreover, we provide some observations explaining this monotone Lagrangian torus would be non-displaceable.

    摘要 i Abstract ii Contents iii 1 Introduction 1 2 Notation and definition 2 2.1 Symplectic manifolds and symplectomorphism 2 2.2 Cotangent bundle with canonical form 3 2.3 Almost complex structure 3 2.4 Chern classes and monotonicity 4 2.5 Symplectic and Hamiltonian vector fields 5 2.6 Lagrangian submanifolds 6 2.7 Maslov index 8 2.7.1 Maslov index for L_n 8 2.7.2 Maslov index for π_2 (M,L) 9 2.7.3 Maslov-Viterbo index 10 2.8 Floer homology 10 2.8.1 Lagrangian intersection Floer cohomology 11 2.8.2 Lagrangian intersection Floer homology 13 3 Non-displaceable Lagrangian torus in T^* S^2 13 3.1 Construction of monotone Lagrangian torus 13 3.2 Non-displaceability 16 4 A monotone Lagrangian torus in T^* RP^2 21 5 Discussion 25 References 27

    [1] Albers, P. and Frauenfelder, U.,A Nondisplaceable Lagrangian Torus in
    T S2. Comm. Pure Appl. Math., 1046-1051, 2008.
    [2] Ana Cannas da Silva, Lectures on Symplectic Geometry . Springer-Verlag,
    2008.
    [3] Banyaga, A. and Hurtubise, D. Lectures On Morse Homology. Springer-
    Verlag, 2010.
    [4] Biran, P. and Cornea, O. Rigidity and uniruling for Lagrangian subman-
    ifolds. Geom. Topol., 2881-2989, 13(2009).
    [5] Byun, Y. Maslov indices in practice. Info. Center for Math. Sci., 2002.
    [6] Floer, A., Morse theory for Lagrangian intersections. J. Di erential Geometry,
    513-547, 28(1988).
    [7] Floer, A., A relative Morse index for the symplectic action. Comm. Pure
    Appl. Math., 393-407, 41(1988).
    [8] Floer, A., The unregularized gradient
    ow of the symplectic action.
    Comm. Pure Appl. Math., 775-813, 41(1988).
    [9] Khovanov, M. and Seidel, P., Quivers, Floer cohomology, and braid group
    actions. J. Amer. Math. Soc. 15,No. 1, 203-271,2002.
    [10] Lee, J., Riemannian Manifolds, Springer-Verlag, 1997.
    [11] McDu , D. and Salamon, D.,Introduction to Symplectic Topology. Oxford
    University Press,1998.
    [12] Milnor, J. and Stashe , J.,Characteristic Classes. Princeton University
    Press, 1974.
    [13] Oh, Y. G., Floer cohomology of Lagrangian intersections and pseudo-
    holomorphisc disks I. Comm. Pure Appl. Math., 949-994, 1993.
    [14] Oh, Y. G., Addendum to " Floer Cohomology of Lagrangian Intersec-
    tions and Pseudo-Holomorphic Discs, I". Comm. Pure Appl. Math., 1299-
    1302, 1995.
    [15] Pozniak, M. Floer homology, Novikov rings and clean intersections.
    Northern California Symplectic Geometry Seminar, 119-181. AMS Translations
    Series 2, 196,1999.
    [16] Viterbo, C. Intersection de sous-varietes lagrangiennes, fonctionnelles
    d''action et indice des systemes hamiltoniens. Bulletin de la S. M. F.,
    1987.

    QR CODE
    :::