| 研究生: |
陳浚廷 Jyun-Ting Chen |
|---|---|
| 論文名稱: |
一個在T*RP2上的單調拉格朗日環面 A monotone Lagrangian torus in T*RP2 |
| 指導教授: |
姚美琳
Mei-Lin Yau |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 數學系 Department of Mathematics |
| 畢業學年度: | 100 |
| 語文別: | 英文 |
| 論文頁數: | 35 |
| 中文關鍵詞: | 拉格朗日環面 、不可置換 、單調 |
| 外文關鍵詞: | non-displaceable, monotone, Lagrangian torus |
| 相關次數: | 點閱:13 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Poterovich在T^* S^2上構造了一個單調拉格朗日環面,Albers和Frauenfelder接著證明了這個環面是不可置換的(non-displaceable)。我們利用類似的構造方式在T^* RP^2上造了一個單調拉格朗日環面,並提出一些觀察,試著解釋這個環面是不可置換的可能性。
Leonid Poterovich constructed a Lagrangian torus in T^* S^2 and then Albers and Frauenfelder proved that Lagrangian torus is non-displaceable. We use similar construction to construct a monotone Lagrangian torus in T^* RP^2. Moreover, we provide some observations explaining this monotone Lagrangian torus would be non-displaceable.
[1] Albers, P. and Frauenfelder, U.,A Nondisplaceable Lagrangian Torus in
T S2. Comm. Pure Appl. Math., 1046-1051, 2008.
[2] Ana Cannas da Silva, Lectures on Symplectic Geometry . Springer-Verlag,
2008.
[3] Banyaga, A. and Hurtubise, D. Lectures On Morse Homology. Springer-
Verlag, 2010.
[4] Biran, P. and Cornea, O. Rigidity and uniruling for Lagrangian subman-
ifolds. Geom. Topol., 2881-2989, 13(2009).
[5] Byun, Y. Maslov indices in practice. Info. Center for Math. Sci., 2002.
[6] Floer, A., Morse theory for Lagrangian intersections. J. Di erential Geometry,
513-547, 28(1988).
[7] Floer, A., A relative Morse index for the symplectic action. Comm. Pure
Appl. Math., 393-407, 41(1988).
[8] Floer, A., The unregularized gradient
ow of the symplectic action.
Comm. Pure Appl. Math., 775-813, 41(1988).
[9] Khovanov, M. and Seidel, P., Quivers, Floer cohomology, and braid group
actions. J. Amer. Math. Soc. 15,No. 1, 203-271,2002.
[10] Lee, J., Riemannian Manifolds, Springer-Verlag, 1997.
[11] McDu , D. and Salamon, D.,Introduction to Symplectic Topology. Oxford
University Press,1998.
[12] Milnor, J. and Stashe , J.,Characteristic Classes. Princeton University
Press, 1974.
[13] Oh, Y. G., Floer cohomology of Lagrangian intersections and pseudo-
holomorphisc disks I. Comm. Pure Appl. Math., 949-994, 1993.
[14] Oh, Y. G., Addendum to " Floer Cohomology of Lagrangian Intersec-
tions and Pseudo-Holomorphic Discs, I". Comm. Pure Appl. Math., 1299-
1302, 1995.
[15] Pozniak, M. Floer homology, Novikov rings and clean intersections.
Northern California Symplectic Geometry Seminar, 119-181. AMS Translations
Series 2, 196,1999.
[16] Viterbo, C. Intersection de sous-varietes lagrangiennes, fonctionnelles
d''action et indice des systemes hamiltoniens. Bulletin de la S. M. F.,
1987.