跳到主要內容

簡易檢索 / 詳目顯示

研究生: 翁郁翔
Yu-Hsiang Weng
論文名稱: M 型矮星的閃焰活動以及極端太空天氣對於 TRAPPIST-1 行星系統的影響
M-Dwarf Flare Activity and Extreme Space Weather Effects on TRAPPIST-1 System
指導教授: 葉永烜
Wing-Huen Ip
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 天文研究所
Graduate Institute of Astronomy
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 79
中文關鍵詞: 紅矮星系外行星閃焰適居性
外文關鍵詞: Red dwarf, Exoplanets, Flares, Habitability
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 經由TESS任務提供的99顆M型矮星光變曲線,我們可以得知恆星的活躍程度。其中的33顆恆星表現出強烈的恆星磁活動。這些總計322個閃焰的能量大致上介於10^31~10^35 爾格。然後我們利用這些資料建造出閃焰能量頻率分佈圖(flare frequency distribution) 並且分析了他們自轉周期跟閃焰頻率的關係。這些閃焰能量頻率分佈圖可以用來評估系外行星的適居性。經過測試,TRAPPIST-1 這顆光譜型為M8紅矮星的日冕物質拋射(coronal mass ejection) 會以4.96%的機率打到他的附屬行星。另外,經由數值模擬我們知道在有磁場為75高斯的恆星上,能量小於6*10^32 爾格的閃焰會生成日冕雨並回到恆星表面,導致無法成功製造日冕物質拋射(Alvarado-Gómezet al., 2018)。

    TRAPPIST-1 經由日冕物質拋射的質量損失在100億年間總計來到10^29 公克,把金星的條件應用在它的這些系外行星上(無磁場且大氣由二氧化碳構成),這些日冕物質拋射會造成系外行星大氣質量在100億年間總損失介於10^19 ~ 10^23 公克。系外行星大氣經由穩定吹拂的恆星風影響,則會在100億年間損失總質量介於10^21 ~ 10^25 公克。利用行星大氣質量損失可以推斷系外行星的適居性。


    The TESS mission has obtained a light curve of 99 M dwarfs that we can
    have a survey to figure out their activity. It was found that 33 stars in our sam-
    ple exhibited magnetic activity. In total, 322 flares are identified, and the flare
    energies are generally in the range of 10^31 ∼ 10^35 ergs. We construct these M-
    type star datasets’ flare frequency distribution (FFD) and analyze the relation be-
    tween rotation period and flare frequency. FFDs can tell us the star activity to as-
    sess the habitability of the exoplanets. We tested an M8 dwarf star TRAPPIST-1
    and found that the probability of a flare-associated coronal mass ejection (CME)
    hit on the exoplanet is about 4.96%. Due to numerical simulation, flare energy
    lower than 6 ∗ 10^32 erg will form a coronal rain back to the star and can not be
    a CME successfully in a 75G magnetic field star (Alvarado-Gómez et al., 2018).
    TRAPPIST-1 total mass loss by CME can up to 10^29 g in 10 Gyr, so cause its ex-
    oplanets loss their atmosphere in the range 10^19 ∼ 10^23 in 10 Gyr totally which
    was applied Venus-like case (no magnetic field and only CO2 atmosphere) on it.
    Also, we found the total atmospheric mass loss by the steady stellar wind was
    in the range 10^21 ∼ 10^25 in 10 Gyr. These atmospheric m

    Introduction 1 1.1 Finding M dwarf . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Exoplanet exploration method . . . . . . . . . . . . . . . . . . . . 2 1.3 Transmission spectroscopy . . . . . . . . . . . . . . . . . . . . . . . 3 1.4 Exoplanet exploration history . . . . . . . . . . . . . . . . . . . . . 3 1.5 Space weather: stellar flare and CMEs . . . . . . . . . . . . . . . . 4 2 Stellar flare activity 5 2.1 FFD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 Super flares of M dwarfs from Kepler and TESS . . . . . . . . . . . 5 2.3 Data Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.4 Bolometric Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.5 Spectral Response Function Correction . . . . . . . . . . . . . . . . 9 2.6 Another correction . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.7 TESS flare M dwarfs FFD . . . . . . . . . . . . . . . . . . . . . . . 17 2.8 Rotation period of active stars . . . . . . . . . . . . . . . . . . . . . 17 3 Space weather impact 24 3.1 Flares and CMEs relation . . . . . . . . . . . . . . . . . . . . . . . . 24 3.2 CME geometry and probability . . . . . . . . . . . . . . . . . . . . 24 3.3 Venus-like atmospheric loss . . . . . . . . . . . . . . . . . . . . . . 29 4 TRAPPIST-1 planetary system 33 4.1 The discovery of TRAPPIST-1 . . . . . . . . . . . . . . . . . . . . . 33 4.2 Habitability of TRAPPIST-1 . . . . . . . . . . . . . . . . . . . . . . 34 vii 4.3 TRAPPIST-1 mass loss by CMEs . . . . . . . . . . . . . . . . . . . 36 4.4 TRAPPIST-1 exoplanet atmospheric mass loss by steady stellar wind . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 4.5 TRAPPIST-1 CME caused planet atmospheric mass loss . . . . . . 39 5 Discussion and summary 43 5.1 FFD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 5.2 Flare activity and stellar rotation period . . . . . . . . . . . . . . . 44 5.3 TRAPPIST-1 exoplanets atmospheric mass loss . . . . . . . . . . . 45 5.4 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Bibliography 47 A 54

    [1] Akeson, R. L. et al. “The NASA Exoplanet Archive: Data and Tools for Exoplanet Research”. In: 125.930 (Aug. 2013), p. 989. DOI: 10.1086/672273.
    arXiv: 1307.2944 [astro-ph.IM].
    [2] Alvarado-Gómez, J. D. et al. “Simulating the environment around planethosting stars. I. Coronal structure”. In: 588, A28 (Apr. 2016), A28. DOI: 10.
    1051/0004-6361/201527832. arXiv: 1601.04443 [astro-ph.SR].
    [3] Alvarado-Gómez, J. D. et al. “Simulating the environment around planethosting stars. II. Stellar winds and inner astrospheres”. In: 594, A95 (Oct.
    2016), A95. DOI: 10 . 1051 / 0004 - 6361 / 201628988. arXiv: 1607 .
    08405 [astro-ph.SR].
    [4] Alvarado-Gómez, Julián D. et al. “Suppression of Coronal Mass Ejections
    in Active Stars by an Overlying Large-scale Magnetic Field: A Numerical
    Study”. In: 862.2, 93 (Aug. 2018), p. 93. DOI: 10 . 3847 / 1538 - 4357 /
    aacb7f. arXiv: 1806.02828 [astro-ph.SR].
    [5] Barnes, Rory. “Tidal locking of habitable exoplanets”. In: Celestial Mechanics and Dynamical Astronomy 129.4 (Dec. 2017), pp. 509–536. DOI: 10.
    1007/s10569-017-9783-7. arXiv: 1708.02981 [astro-ph.EP].
    [6] Chang, S. W., Byun, Y. I., and Hartman, J. D. “Photometric Study on Stellar Magnetic Activity. I. Flare Variability of Red Dwarf Stars in the Open
    Cluster M37”. In: 814.1, 35 (Nov. 2015), p. 35. DOI: 10.1088/0004-637X/
    814/1/35. arXiv: 1510.01005 [astro-ph.SR].
    [7] Charbonneau, Paul. “Dynamo Models of the Solar Cycle”. In: Living Reviews in Solar Physics 7.1, 3 (Sept. 2010), p. 3. DOI: 10 . 12942 / lrsp -
    2010-3.
    [8] Cohen, O. et al. “Giant Coronal Loops Dominate the Quiescent X-Ray
    Emission in Rapidly Rotating M Stars”. In: 834.1, 14 (Jan. 2017), p. 14.
    DOI: 10 . 3847 / 1538 - 4357 / 834 / 1 / 14. arXiv: 1611 . 02141
    [astro-ph.SR].
    [9] Davenport, James. R. A., Mendoza, Guadalupe Tovar, and Hawley,
    Suzanne L. “10 Years of Stellar Activity for GJ 1243”. In: 160.1, 36 (July
    2020), p. 36. DOI: 10.3847/1538-3881/ab9536. arXiv: 2005.10281
    [astro-ph.SR].
    [10] Davenport, James R. A. et al. “Kepler Flares. II. The Temporal Morphology of White-light Flares on GJ 1243”. In: 797.2, 122 (Dec. 2014),
    p. 122. DOI: 10.1088/0004- 637X/797/2/122. arXiv: 1411.3723
    [astro-ph.SR].
    [11] Davenport, James R. A. et al. “The Evolution of Flare Activity with Stellar
    Age”. In: 871.2, 241 (Feb. 2019), p. 241. DOI: 10 . 3847 / 1538 - 4357 /
    aafb76. arXiv: 1901.00890 [astro-ph.SR].
    [12] de Wit, Julien et al. “A combined transmission spectrum of the Earth-sized
    exoplanets TRAPPIST-1 b and c”. In: 537.7618 (Sept. 2016), pp. 69–72. DOI:
    10.1038/nature18641. arXiv: 1606.01103 [astro-ph.EP].
    [13] Dong, Chuanfei et al. “Atmospheric escape from the TRAPPIST-1 planets
    and implications for habitability”. In: Proceedings of the National Academy of
    Science 115.2 (Jan. 2018), pp. 260–265. DOI: 10.1073/pnas.1708010115.
    arXiv: 1705.05535 [astro-ph.EP].
    [14] Drake, Jeremy J. et al. “Implications of Mass and Energy Loss due to Coronal Mass Ejections on Magnetically Active Stars”. In: 764.2, 170 (Feb. 2013),
    p. 170. DOI: 10.1088/0004- 637X/764/2/170. arXiv: 1302.1136
    [astro-ph.SR].
    [15] Engle, Scott G. and Guinan, Edward F. “The Rotation-Age Relationship of
    M Dwarfs: A Progress Report of the Living with a Red Dwarf Program”.
    In: Research Notes of the American Astronomical Society 2.1, 34 (Feb. 2018),
    p. 34. DOI: 10.3847/2515-5172/aab1f8.
    [16] Fleming, Thomas A., Giampapa, Mark S., and Garza, David. “The Quiescent Corona of VB 10”. In: 594.2 (Sept. 2003), pp. 982–986. DOI: 10.1086/
    376968.
    [17] Fleming, Thomas A., Giampapa, Mark S., and Schmitt, Jürgen H. M. M.
    “An X-Ray Flare Detected on the M8 Dwarf VB 10”. In: 533.1 (Apr. 2000),
    pp. 372–377. DOI: 10 . 1086 / 308657. arXiv: astro - ph / 0002065
    [astro-ph].
    [18] France, Kevin et al. “The MUSCLES Treasury Survey. I. Motivation and
    Overview”. In: 820.2, 89 (Apr. 2016), p. 89. DOI: 10.3847/0004-637X/
    820/2/89. arXiv: 1602.09142 [astro-ph.SR].
    [19] Garraffo, Cecilia, Drake, Jeremy J., and Cohen, Ofer. “Magnetic Complexity as an Explanation for Bimodal Rotation Populations among Young
    Stars”. In: 807.1, L6 (July 2015), p. L6. DOI: 10.1088/2041-8205/807/
    1/L6. arXiv: 1506.01713 [astro-ph.SR].
    [20] Giampapa, M. S. et al. “The Coronae of Low-Mass Dwarf Stars”. In: 463
    (June 1996), p. 707. DOI: 10.1086/177284.
    [21] Gibson, S. E. and Low, B. C. “A Time-Dependent Three-Dimensional Magnetohydrodynamic Model of the Coronal Mass Ejection”. In: 493.1 (Jan.
    1998), pp. 460–473. DOI: 10.1086/305107.
    [22] Gillon, Michaël et al. “Seven temperate terrestrial planets around the
    nearby ultracool dwarf star TRAPPIST-1”. In: 542.7642 (Feb. 2017),
    pp. 456–460. DOI: 10 . 1038 / nature21360. arXiv: 1703 . 01424
    [astro-ph.EP].
    [23] Gonzalez, W. D. et al. “What is a geomagnetic storm?” In: 99.A4 (Apr.
    1994), pp. 5771–5792. DOI: 10.1029/93JA02867.
    [24] Gopalswamy, N. et al. “Coronal Mass Ejections and Solar Polarity Reversal”. In: 598.1 (Nov. 2003), pp. L63–L66. DOI: 10.1086/380430.
    [25] Gopalswamy, N. et al. “Prominence eruptions and coronal mass ejection:
    a statistical study using microwave observations”. In: Annual Report of the
    National Astronomical Observatory of Japan. Vol. 5. 2004, p. 18.
    [26] Günther, Maximilian N. et al. “Stellar Flares from the First TESS Data Release: Exploring a New Sample of M Dwarfs”. In: 159.2, 60 (Feb. 2020),
    p. 60. DOI: 10 . 3847 / 1538 - 3881 / ab5d3a. arXiv: 1901 . 00443
    [astro-ph.EP].
    [27] Hawley, Suzanne L. “Magnetic Activity in Low-Mass Stars”. In: 105 (Sept.
    1993), p. 955. DOI: 10.1086/133262.
    [28] Hawley, Suzanne L. et al. “Multiwavelength Observations of Flares on AD
    Leonis”. In: 597.1 (Nov. 2003), pp. 535–554. DOI: 10.1086/378351.
    [29] Hawley, Suzanne L. et al. “Kepler Flares. I. Active and Inactive M Dwarfs”.
    In: 797.2, 121 (Dec. 2014), p. 121. DOI: 10.1088/0004- 637X/797/2/
    121. arXiv: 1410.7779 [astro-ph.SR].
    [30] Hilton, Eric J. “The Galactic M Dwarf Flare Rate”. PhD thesis. University
    of Washington, Seattle, Jan. 2011.
    [31] Huang, L. C. et al. “M-dwarf Eclipsing Binaries with Flare Activity”. In:
    892.1, 58 (Mar. 2020), p. 58. DOI: 10.3847/1538-4357/ab774a.
    [32] Jin, M. et al. “Data-constrained Coronal Mass Ejections in a Global Magnetohydrodynamics Model”. In: 834.2, 173 (Jan. 2017), p. 173. DOI: 10 .
    3847/1538-4357/834/2/173. arXiv: 1605.05360 [astro-ph.SR].
    [33] Kasting, James F., Whitmire, Daniel P., and Reynolds, Ray T. “Habitable
    Zones around Main Sequence Stars”. In: 101.1 (Jan. 1993), pp. 108–128.
    DOI: 10.1006/icar.1993.1010.
    [34] Khodachenko, Maxim L. et al. “Coronal Mass Ejection (CME) Activity of
    Low Mass M Stars as An Important Factor for The Habitability of Terrestrial Exoplanets. I. CME Impact on Expected Magnetospheres of EarthLike Exoplanets in Close-In Habitable Zones”. In: Astrobiology 7.1 (Feb.
    2007), pp. 167–184. DOI: 10.1089/ast.2006.0127.
    [35] Kretzschmar, M. “The Sun as a star: observations of white-light flares”.
    In: 530, A84 (June 2011), A84. DOI: 10.1051/0004-6361/201015930.
    arXiv: 1103.3125 [astro-ph.SR].
    [36] Kulikov, Yu. N. et al. “Atmospheric and water loss from early Venus”. In:
    54.13-14 (Nov. 2006), pp. 1425–1444. DOI: 10.1016/j.pss.2006.04.
    021.
    [37] Lichtenegger, H. I. M. et al. “Non-thermal escape of the martian CO2 atmosphere over time: Constrained by Ar isotopes”. In: 382, 115009 (Aug.
    2022), p. 115009. DOI: 10 . 1016 / j . icarus . 2022 . 115009. arXiv:
    2105.09789 [astro-ph.EP].
    [38] Lin, C. L. et al. “A Comparative Study of the Magnetic Activities of Lowmass Stars from M-type to G-type”. In: 873.1, 97 (Mar. 2019), p. 97. DOI:
    10.3847/1538-4357/ab041c.
    [39] Manchester, Ward B. et al. “Three-dimensional MHD simulation of a
    flux rope driven CME”. In: Journal of Geophysical Research (Space Physics)
    109.A1, A01102 (Jan. 2004), A01102. DOI: 10.1029/2002JA009672.
    [40] Marois, Christian et al. “Direct Imaging of Multiple Planets Orbiting the
    Star HR 8799”. In: Science 322.5906 (Nov. 2008), p. 1348. DOI: 10.1126/
    science.1166585. arXiv: 0811.2606 [astro-ph].
    [41] Mullan, D. J. et al. “Magnetic Fields on the Flare Star Trappist-1: Consequences for Radius Inflation and Planetary Habitability”. In: 869.2, 149
    (Dec. 2018), p. 149. DOI: 10.3847/1538-4357/aaee7c. arXiv: 1811.
    04149 [astro-ph.SR].
    [42] Ness, J. U. et al. “On the sizes of stellar X-ray coronae”. In: 427 (Nov. 2004),
    pp. 667–683. DOI: 10 . 1051 / 0004 - 6361 : 20040504. arXiv: astro -
    ph/0407231 [astro-ph].
    [43] Ochsenbein, F., Bauer, P., and Marcout, J. “The VizieR database of astronomical catalogues”. In: 143 (Apr. 2000), pp. 23–32. DOI: 10.1051/aas:
    2000169. arXiv: astro-ph/0002122 [astro-ph].
    [44] Okamoto, J. and Sakurai, T. “The Strongest Magnetic Field in Sunspots”.
    In: AGU Fall Meeting Abstracts. Vol. 2017. Dec. 2017, SH51C-2496, SH51C–
    2496.
    [45] Pallavicini, R. et al. “Relations among stellar X-ray emission observed
    from Einstein, stellar rotation and bolometric luminosity.” In: 248 (Aug.
    1981), pp. 279–290. DOI: 10.1086/159152.
    [46] Pecaut, Mark J. and Mamajek, Eric E. “Intrinsic Colors, Temperatures,
    and Bolometric Corrections of Pre-main-sequence Stars”. In: 208.1, 9 (Sept.
    2013), p. 9. DOI: 10.1088/0067-0049/208/1/9. arXiv: 1307.2657
    [astro-ph.SR].
    [47] Ramsay, Gavin et al. “Short-duration high-amplitude flares detected on
    the M dwarf star KIC 5474065”. In: 434.3 (Sept. 2013), pp. 2451–2457. DOI:
    10.1093/mnras/stt1182. arXiv: 1306.5938 [astro-ph.SR].
    [48] Rubenstein, Eric P. and Schaefer, Bradley E. “Are Superflares on Solar Analogues Caused by Extrasolar Planets?” In: 529.2 (Feb. 2000), pp. 1031–1033.
    DOI: 10.1086/308326. arXiv: astro-ph/9909187 [astro-ph].
    [49] Siegfried B and; Helmut, L. Planetary Aeronomy: Atmosphere Enviroment in
    Planetary Systems. Springer Verlag, 2004.
    [50] Sokolov, Igor V. et al. “Magnetohydrodynamic Waves and Coronal Heating: Unifying Empirical and MHD Turbulence Models”. In: 764.1, 23 (Feb.
    2013), p. 23. DOI: 10.1088/0004-637X/764/1/23. arXiv: 1208.3141
    [astro-ph.SR].
    [51] Sokolov, Igor V. et al. “Threaded-field-line Model for the Low Solar Corona
    Powered by the Alfvén Wave Turbulence”. In: 908.2, 172 (Feb. 2021), p. 172.
    DOI: 10.3847/1538-4357/abc000.
    [52] Stassun, Keivan G. et al. “The Revised TESS Input Catalog and Candidate
    Target List”. In: 158.4, 138 (Oct. 2019), p. 138. DOI: 10.3847/1538-3881/
    ab3467. arXiv: 1905.10694 [astro-ph.SR].
    [53] Stelzer, B. et al. “The UV and X-ray activity of the M dwarfs within 10 pc
    of the Sun”. In: 431.3 (May 2013), pp. 2063–2079. DOI: 10.1093/mnras/
    stt225. arXiv: 1302.1061 [astro-ph.SR].
    [54] The Sun and the Heliosphere as an Integrated System. Vol. 317. Astrophysics
    and Space Science Library. Nov. 2004. DOI: 10 . 1007 / 978 - 1 - 4020 -
    2831-9.
    [55] van der Holst, B. et al. “Alfvén Wave Solar Model (AWSoM): Coronal
    Heating”. In: 782.2, 81 (Feb. 2014), p. 81. DOI: 10.1088/0004- 637X/
    782/2/81. arXiv: 1311.4093 [astro-ph.SR].
    [56] Van Grootel, Valérie et al. “Stellar Parameters for Trappist-1”. In: 853.1, 30
    (Jan. 2018), p. 30. DOI: 10.3847/1538- 4357/aaa023. arXiv: 1712.
    01911 [astro-ph.SR].
    [57] Vida, K. et al. “Frequent Flaring in the TRAPPIST-1 System—Unsuited for
    Life?” In: 841.2, 124 (June 2017), p. 124. DOI: 10 . 3847 / 1538 - 4357 /
    aa6f05. arXiv: 1703.10130 [astro-ph.SR].
    [58] Walkowicz, Lucianne M. et al. “White-light Flares on Cool Stars in the
    Kepler Quarter 1 Data”. In: 141.2, 50 (Feb. 2011), p. 50. DOI: 10.1088/
    0004-6256/141/2/50. arXiv: 1008.0853 [astro-ph.SR].
    [59] Welsh, William F. et al. “Recent Kepler Results On Circumbinary Planets”.
    In: Formation, Detection, and Characterization of Extrasolar Habitable Planets.
    Ed. by Nader Haghighipour. Vol. 293. Apr. 2014, pp. 125–132. DOI: 10.
    1017/S1743921313012684. arXiv: 1308.6328 [astro-ph.EP].
    [60] Wenger, M. et al. “The SIMBAD astronomical database. The CDS reference
    database for astronomical objects”. In: 143 (Apr. 2000), pp. 9–22. DOI: 10.
    1051/aas:2000332. arXiv: astro-ph/0002110 [astro-ph].
    [61] Williams, P. K. G., Cook, B. A., and Berger, E. “Trends in Ultracool Dwarf
    Magnetism. I. X-Ray Suppression and Radio Enhancement”. In: 785.1, 9
    (Apr. 2014), p. 9. DOI: 10.1088/0004-637X/785/1/9. arXiv: 1310.
    6757 [astro-ph.SR].
    [62] Wolszczan, A. and Frail, D. A. “A planetary system around the millisecond pulsar PSR1257 + 12”. In: 355.6356 (Jan. 1992), pp. 145–147. DOI: 10.
    1038/355145a0.
    [63] Wood, Brian E. et al. “Measured Mass-Loss Rates of Solar-like Stars as
    a Function of Age and Activity”. In: 574.1 (July 2002), pp. 412–425. DOI:
    10.1086/340797. arXiv: astro-ph/0203437 [astro-ph].
    [64] Wright, Nicholas J. et al. “The Stellar-activity-Rotation Relationship and
    the Evolution of Stellar Dynamos”. In: 743.1, 48 (Dec. 2011), p. 48. DOI: 10.
    1088/0004-637X/743/1/48. arXiv: 1109.4634 [astro-ph.SR].
    [65] Yang, Huiqin et al. “The Flaring Activity of M Dwarfs in the Kepler Field”.
    In: 849.1, 36 (Nov. 2017), p. 36. DOI: 10.3847/1538-4357/aa8ea2.
    [66] Yashiro, S. et al. “A catalog of white light coronal mass ejections observed
    by the SOHO spacecraft”. In: Journal of Geophysical Research (Space Physics)
    109.A7, A07105 (July 2004), A07105. DOI: 10.1029/2003JA010282.
    [67] Yashiro, Seiji and Gopalswamy, Nat. “Statistical relationship between solar
    flares and coronal mass ejections”. In: Universal Heliophysical Processes. Ed.
    by N. Gopalswamy and D. F. Webb. Vol. 257. Mar. 2009, pp. 233–243. DOI:
    10.1017/S1743921309029342.
    [68] Youssef, M. “On the relation between the CMEs and the solar flares”. In:
    NRIAG Journal of Astronomy and Geophysics 1.2 (Dec. 2012), pp. 172–178.
    DOI: 10.1016/j.nrjag.2012.12.014.
    [69] Zendejas, J., Segura, A., and Raga, A. C. “Atmospheric mass loss by stellar
    wind from planets around main sequence M stars”. In: 210.2 (Dec. 2010),
    pp. 539–544. DOI: 10.1016/j.icarus.2010.07.013. arXiv: 1006.
    0021 [astro-ph.EP].

    QR CODE
    :::