跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳廣澤
Guang-Ze Chen
論文名稱: 尖晶石Fe₃V₃O₈負極材料在磁場下之鋰/鈉離子電池性能與老化效應研究
Study on the Lithium/Sodium-Ion Battery Performance and Aging Effects of Spinel Fe₃V₃O₈ Anode Material under Magnetic Field Influence
指導教授: 楊仲準
Chun-Chuen Yang
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 66
中文關鍵詞: 尖晶石材料電池磁場
外文關鍵詞: Fe₃V₃O₈
相關次數: 點閱:122下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以尖晶石結構的Fe₃V₃O₈作為鋰/鈉離子電池之負極材料,探討其在不同條件下的電化學性能與加磁場所引發之老化效應。樣品採用水熱法搭配高溫燒結法合成,並透過X-ray繞射(XRD)及X-ray吸收光譜(XAS)進行相純性、晶體結構與過渡金屬價數之分析。結果顯示,樣品中釩(V)主要以V³⁺ 存在,而鐵(Fe)則以Fe³⁺為主。
    進一步由BET 分析顯示,樣品具有中孔結構及適當比表面積,有助於鋰/鈉離子嵌入與脫嵌反應。於充放電測試中,前三圈可清楚觀察到對應平台及初期 SEI膜的生成現象。為分析老化行為,本研究透過電化學阻抗譜(EIS)比較施加與未施加磁場(300 mT)下多圈次循環後的電化學特性變化。實驗結果顯示,施加磁場會提升SEI膜阻抗與電荷轉移阻抗,並降低電容行為的理想性,對鈉離子的擴散速率亦有抑制作用,顯示磁場可能對鈉離子電池中的離子傳輸與界面反應產生不利影響。然而,對於鋰離子系統而言,在某些條件下磁場則可能有助於提升離子擴散效率。


    In this study, spinel-structured Fe₃V₃O₈ was employed as an anode material for lithium/sodium-ion batteries to investigate its electrochemical performance under various conditions, as well as the aging effects induced by an applied magnetic field. The samples were synthesized using a hydrothermal method followed by high-temperature sintering. X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS) were employed to investigate the phase purity, crystal structure, and oxidation states of the transition metals. The results indicate that vanadium (V) predominantly exists in the V³⁺ state, while iron (Fe) mainly exhibits the Fe³⁺ valence state. BET analysis further revealed that the samples possess a mesoporous structure and a suitable specific surface area, which are favorable for lithium/sodium ion intercalation and deintercalation reactions. During the initial charge-discharge tests, distinct voltage plateaus and the formation of the solid electrolyte interphase (SEI) layer were observed within the first three cycles. To analyze aging behavior, electrochemical impedance spectroscopy (EIS) was employed to compare changes in electrochemical properties after multiple cycles with and without the application of a magnetic field (300 mT). The results show that the presence of a magnetic field increases both the SEI layer resistance and the charge transfer resistance, reduces the ideality of capacitive behavior, and suppresses sodium-ion diffusion rates. These findings suggest that magnetic fields may adversely affect ion transport and interfacial reactions in sodium-ion batteries. However, for lithium-ion systems, the magnetic field may, under certain conditions, enhance ion diffusion efficiency.

    摘要 i Abstract ii 致謝 iii 目錄 iv 圖目錄 vi 表目錄 viii 第一章 簡介 1 1.1電池材料 1 1.2文獻回顧 2 1.3研究動機與方向 8 第二章 實驗理論 9 2.1 X光粉末繞射 9 2.2 X光吸收光譜 11 2.3 BET理論 13 2.4 電池原理 14 2.5 電池充放電量測 16 2.5.1 前三次充放電量測 16 2.5.2循環充放電測量 17 2.5.3 C-rate 測量 17 第三章 實驗儀器與實驗方法 22 3.1實驗儀器 22 3.1.1 X光繞射儀 22 3.1.2 BL17C1 X光吸收光譜光束線 22 3.1.3 孔洞及表面積分析儀 24 3.1.4電池自動充放電量測主機 25 3.1.5 EIS阻抗分析儀 26 3.2 樣品製備 27 3.2.1 所需藥品 27 3.2.2 樣品製備 28 3.2.3電池陽極極片製備 29 3.2.4 鈕扣電池製備 30 第四章 數據分析 31 4.1 材料分析 31 4.2電池分析 34 4.2.1 鈉離子電池分析 34 4.2.2 鋰離子電池分析 41 4.2.3 能量功率密度變化 47 第五章 結論 49 第六章 參考資料 50

    [1] Xu, Y., Zhu, Y., Liu, Y., & Wang, C. (2013). Electrochemical performance of porous carbon/tin composite anodes for sodium-ion and lithium-ion batteries. Advanced Energy Materials, 3(1), 128–133.
    [2] Kim, Y., Ha, K.-H., Oh, S. M., & Lee, K. T. (2014). High-capacity anode materials for sodium-ion batteries. Chemistry (Weinheim an Der Bergstrasse, Germany), 20(38), 11980–11992.
    [3] Chen, C., Lu, Y., Ge, Y., Zhu, J., Jiang, H., Li, Y., … Zhang, X. (2016). Synthesis of nitrogen‐doped electrospun carbon nanofibers as anode material for high‐performance sodium‐ion batteries. Energy Technology, 4(11), 1440–1449.
    [4] Liu, Q., Wang, J., Luo, Y., Miao, L., Yan, Y., Xue, L., & Zhang, W. (2017). Facile synthesis of FeSi4P4 and its Sodium Ion Storage Performance. Electrochimica Acta, 247, 820–825.
    [5] Krengel, M., Hansen, A.-L., Kaus, M., Indris, S., Wolff, N., Kienle, L., … Bensch, W. (2017). CuV2S4: A high rate capacity and stable anode material for sodium ion batteries. ACS Applied Materials & Interfaces, 9(25), 21283–21291.
    [6] Vaalma, C., Buchholz, D., Weil, M., & Passerini, S. (2018). A cost and resource analysis of sodium-ion batteries. Nature Reviews. Materials, 3(4), 18013.
    [7] Zhao, L.-F., Hu, Z., Lai, W.-H., Tao, Y., Peng, J., Miao, Z.-C., … Dou, S.-X. (2021). Hard carbon anodes: Fundamental understanding and commercial perspectives for Na‐ion batteries beyond Li‐ion and K‐ion counterparts. Advanced Energy Materials, 11(1), 2002704.
    [8] Fang, S., Bresser, D., & Passerini, S. (2022, June 7). Transition metal oxide anodes for electrochemical energy storage in lithium‐ and sodium‐ion batteries. Transition Metal Oxides for Electrochemical Energy Storage, pp. 55–99.
    [9] Muruganantham, R., Huang, J.-Y., Wu, P.-J., Kuo, L.-Y., Yang, C.-C., Lin, Y.-G., … Liu, W.-R. (2024). Nano-crystalline Fe3V3O8 material as an efficient advanced anode for energy storage applications. Journal of Power Sources, 613(234947), 234947.
    [10] Liu, Y., Zhang, N., Yu, C., Jiao, L., & Chen, J. (2016). MnFe2O4@C nanofibers as high-performance anode for sodium-ion batteries. Nano Letters, 16(5), 3321–3328.
    [11] Maggay, I. V. B., De Juan, L. M. Z., Lu, J. S., Nguyen, M. T., Yonezawa, T., Chan, T. S., & Liu, W. R. (2018). Electrochemical properties of novel FeV2O4 as an anode for Na-ion batteries. Scientific reports, 8(1), 8839.
    [12] Zhou, Y., Liu, Y., Wang, Q., Sun, X., Liu, Z., Liu, R., & Jiang, F. (2018). Carbon-coated hierarchical spinel Fe1.5V1.5O4 nanorods: A promising anode material for enhanced lithium storage. Journal of Alloys and Compounds, 746, 108–115.
    [13] Sun, Y., Guo, S., & Zhou, H. (2019). Adverse effects of interlayer-gliding in layered transition-metal oxides on electrochemical sodium-ion storage. Energy & Environmental Science, 12(3), 825–840.
    [14] Liu, Q., Hu, Z., Chen, M., Zou, C., Jin, H., Wang, S., … Dou, S.-X. (2020). The cathode choice for commercialization of sodium‐ion batteries: Layered transition metal oxides versus Prussian blue analogs. Advanced Functional Materials, 30(14), 1909530.
    [15] Liu, Y., Zhang, Y.-H., Ma, J., Zhao, J., Li, X., & Cui, G. (2024). Challenges and strategies toward practical application of layered transition metal oxide cathodes for sodium-ion batteries. Chemistry of Materials: A Publication of the American Chemical Society, 36(1), 54–73.
    [16] Hao Sim, D., Rui, X., Chen, J., Tan, H., Lim, T. M., Yazami, R., … Yan, Q. (2012). Direct growth of FeVO4 nanosheet arrays on stainless steel foil as high-performance binder-free Li ion battery anode. RSC Advances, 2(9), 3630. .
    [17] Yan, N., Xu, Y., Li, H., & Chen, W. (2016). The preparation of FeVO 4 as a new sort of anode material for lithium ion batteries. Materials Letters, 165, 223–226.
    [18] Liu, X., Cao, Y., Zheng, H., & Feng, C. (2017). Synthesis and electrochemical performances of FeVO4·xH2O and FeVO4·xH2O/graphene as novel anode materials. Materials Letters, 187, 15–19.
    [19] Zhang, Q., Pei, J., Chen, G., Bie, C., Chen, D., Jiao, Y., & Rao, J. (2017). Co 3 V 2 O 8 hexagonal pyramid with tunable inner structure as high performance anode materials for lithium ion battery. Electrochimica Acta, 238, 227–236.
    [20] Soundharrajan, V., Sambandam, B., Song, J., Kim, S., Jo, J., Pham, D. T., … Kim, J. (2017). Bitter gourd-shaped Ni3V2O8 anode developed by a one-pot metal-organic framework-combustion technique for advanced Li-ion batteries. Ceramics International, 43(16), 13224–13232.
    [21] Sambandam, B., Soundharrajan, V., Song, J., Kim, S., Jo, J., Pham, D. T., … Kim, J. (2018). Ni3V2O8 nanoparticles as an excellent anode material for high-energy lithium-ion batteries. Journal of Electroanalytical Chemistry (Lausanne, Switzerland), 810, 34–40.
    [22] Xu, H., Fan, J., Pang, D., Zheng, Y., Chen, G., Du, F., … Gao, Y. (2022). Synergy of ferric vanadate and MXene for high performance Li- and Na-ion batteries. Chemical Engineering Journal , 436, 135012.
    [23] Ding, X., Huang, X., Jin, J., Ming, H., Wang, L., & Ming, J. (2018). Advanced and safer lithium-ion battery based on sustainable electrodes. Journal of Power Sources, 379, 53–59.
    [24] Zhuang, Q. C., Wei, T., Du, L. L., Cui, Y. L., Fang, L., & Sun, S. G. (2010). An electrochemical impedance spectroscopic study of the electronic and ionic transport properties of spinel LiMn2O4. The Journal of Physical Chemistry. C, Nanomaterials and Interfaces, 114(18), 8614–8621.
    [25] Thommes, M., Kaneko, K., Neimark, A., Olivier, J., Rodriguez-Reinoso, F., Rouquerol, J. & Sing, K. (2015). Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry, 87(9-10), 1051-1069.
    [26] M.C. Lin, M. Gong, B. Lu, Y. Wu, D.Y. Wang et al. (2015). An ultrafast rechargeable aluminium-ion battery. Nature 520, 325–328.
    [27] H. Chen, F. Guo, Y. Liu, T. Huang, B. Zheng et al. (2017). A defect-free principle for advanced graphene cathode of aluminum-ion battery. Adv. Mater. 29(12), 1605958.
    [28] N.P. Stadie, S. Wang, K.V. Kravchyk, M.V. Kovalenko. (2017). Zeolite-templated carbon as an ordered microporous electrode for aluminum batteries. ACS Nano 11(2), 1911–1919 (2017).
    [29] L. Somerville, J. Bareno, S. Trask, P. Jennings, A. McGordon et al. (2016). The effect of charging rate on the graphite electrode of commercial lithium-ion cells: a post-mortem study. J. Power Sources 335, 189–196.
    [30] Kim, J., Raj, M.R. & Lee, G. (2021). High-Defect-Density Graphite for Superior-Performance Aluminum-Ion Batteries with Ultra-Fast Charging and Stable Long Life. Nano-Micro Lett. 13, 171.
    [31] Shah, A., Senapati, S., Murthy, H. C. A., Singh, L. R., & Mahato, M. (2023). Supercapacitor performance of NiO, NiO-MWCNT, and NiO-Fe-MWCNT composites. ACS Omega, 8(37), 33380–33391.
    [32] Roy, A.; Ray, A.; Saha, S.; Ghosh, M.; Das, T.; Satpati, B.; Nandi, M.; Das, S. (2018). NiO-CNT composite for high performance supercapacitor electrode and oxygen evolution reaction. Electrochim. Acta , 283, 327– 337,
    [33] Yu, L.; Wang, G.; Wan, G.; Wang, G.; Lin, S.; Li, X.; Wang, K.; Bai, Z.; Xiang, Y. (2016). Highly effective synthesis of NiO/CNT nanohybrids by atomic layer deposition for high-rate and long-life supercapacitors. Dalton Trans. 45, 13779– 13786,
    [34] Zolfaghari, A.; Ataherian, F.; Ghaemi, M.; Gholami. (2007). A. Capacitive behavior of nanostructured MnO2 prepared by sonochemistry method. Electrochim. Acta ,52, 2806– 2814,

    QR CODE
    :::