跳到主要內容

簡易檢索 / 詳目顯示

研究生: 王志遠
Zhi-Yuan Wang
論文名稱: 利用銅催化直接碳-氫/碳-碘耦合反應之省步驟合成途徑製備以苯并三噻吩為主結構之電洞傳輸材料
Step-Saving Synthetic Route to Benzotrithiophene-Based Hole-Transporting Materials via Copper-Catalyzed Direct C-H/C-I Coupling Reaction
指導教授: 劉青原
Ching-Yuan Liu
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程與材料工程學系
Department of Chemical & Materials Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 102
中文關鍵詞: 電洞傳輸材料鈣鈦礦太陽能電池碳氫鍵芳香環化反應苯并三噻吩
外文關鍵詞: Hole-transporting materials, Perovskite solar cells, C-H arylation, Benzotrithiophene
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,石油能源枯竭與環保意識抬頭,綠色能源被各國所重視,綠色能源中屬太陽能電池最具潛能,且太陽能電池有取之不盡用之不竭的優勢,因此廣受學者們所關注,而其中新興的鈣鈦礦太陽能電池,不僅克服許多元件上的缺陷,且具優異的光電轉換效率,為最具前景發展太陽能電池。
    鈣鈦礦太陽能電池是有機材料及無機材料堆疊而成,而有機材料之中電洞傳輸層扮演至關重大的角色,其功能是為了阻止電子電洞對的再結合,並協助電洞的傳遞,因此找到好的電洞傳輸層成為學者們努力的目標。眾多電洞傳輸層中,spiro-OMeTAD應用於鈣鈦礦太陽能電池時,具有優異的光電轉換效率,因此廣泛被學者們所使用,然而其製作成本昂貴及合成步驟繁瑣,無法應用於商業化之產品,所以探索低成本、簡單合成步驟及優異光電轉換效率的新型電洞傳輸層,便成為學者們所追求的目標。
    近期以苯并三噻吩 (benzotrithiophene, BTT) 作為電洞傳輸層的鈣鈦礦太陽能電池,皆具有不錯的光電轉換效率,然而其製備方法須透過傳統的人名反應合成,其中包含具有毒性或價格昂貴的有機金屬試劑。相較於先前文獻的報導,本研究以苯并三噻吩作為主結構,利用價格便宜的銅觸媒作為催化劑進行關鍵的碳氫鍵芳香環化反應,此合成策略可以有效的減少合成步驟及有機金屬試劑的使用,並透過更換觸媒、配位基及溶劑等篩選出最佳化條件後,製備新型電洞傳輸分子(ZYW01~ZYW04),進而透過更換不同的官能基,探討各電洞傳輸材料熱性質及光電性質,並評估其應用於鈣鈦礦太陽能電池光電轉換效率之表現。此外本論文同時討論旋轉塗佈及刮刀塗佈,於元件製作及探討光電性質的影響。


    Perovskite solar cells are composed of organic and inorganic materials. Hole transport layer plays a vital role in organic materials. Mains to avoid electrons and holes recombining. Based on perovskite solar cells, spiro-OMeTAD has greater photoelectric conversion efficiency in a lot of hole transport layers. So it is widely used in hole transport layers, however, its high manufacturing cost and complicated synthesis. Therefore explore a new type of hole transport layers with low cost, simple synthesis steps and improving the photoelectric conversion efficiency have become the goals by scholars.
    Recently, Perovskite solar cells using benzotrithiophene (BTT) as hole transport layer have good photoelectric conversion efficiency. However, traditional synthesis methods must be synthesized by toxic tin reagents. Comparing to previous report. We use Benzotrithiophene as central core structure, and we use low cost copper as catalyst for Cu-catalyst direct C-H arylation. This synthesis stage can effectively reduce use toxic reagent and the complicated steps. We attempt the different kind of catalyst, ligand, solvent…etc. After optimize conditions to prepare the new type of hole transport layer (ZYW01~ZYW04). Such as changing different functional group, to discuss thermal property and optoelectronic properties. Evaluating its photoelectric conversion efficiency applied to perovskite solar cells. In addition, We also discuss spin-coating and blade-coating which manufacturing of solar cell photoelectronic properties.

    摘要 i 英文摘要 ii 謝誌 iii 圖目錄 vi 表目錄 一 viii 表目錄 二 ix 化合物對照表 x 一、緒論 1 1-1 鈣鈦礦太陽能電池發展歷史 2 1-2 鈣鈦礦太陽能電池之工作原理 4 1-2-1 鈣鈦礦太陽能電池:主動層 6 1-2-2 鈣鈦礦太陽能電池:電洞傳輸層 7 1-3常見電洞傳輸層種類 9 1-3-1苯并三噻吩為主結構應用於鈣鈦礦太陽能電池: 18 1-3-2 苯并三噻吩為主結構之電洞傳輸材料合成途徑 20 二、研究動機 22 三、結果與討論 29 3-1 銅催化劑進行碳氫鍵芳香環化篩選最佳的反應條件 29 3-2 苯并三噻吩為中心的電洞傳輸材料ZYW01~ZYW04 37 3-3 反應機制探討 39 3-4 性質量測及分析 41 3-4-1 光學性質量測及分析 41 3-4-2 電化學性質量測及分析 43 3-4-3電洞遷移率量測及分析 45 3-4-4 熱性質量測及分析 47 3-4-5 應用於鈣鈦礦太陽能電池之效率表現 50 3-4-6 光激發螢光量測及分析 60 四、結論與展望 64 五、實驗部分 65 5-1藥品溶劑與儀器設備 65 5-2 鈣鈦礦太陽能電池製成 67 5-3 電洞傳輸材料ZYW01~ZYW04合成與鑑定 69 六、高解析質譜圖與核磁共振圖譜 74 七、參考資料 82

    [1] Miles, R.W.; Zoppi, G.; Forbes, I. Mater. Today 2007, 10, 20-27.
    [2] Yoshikawa, K.; Kawasaki, H.; Yoshida, W.; Irie, T.; Konishi, K.; Nakano, K.; Uto, T.; Adachi, D.; Kanematsu, M.; Uzu, H.; Yamamoto, K. Nature Energy. 2017, 2, 17032-17039.
    [3] https://www.nrel.gov/pv/assets/pdfs/pv-efficiency-chart.20190103.pdf
    [4] Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T., J. Am. Chem. Soc. 2009, 131, 6050-6051
    [5] Kim, H.-S.; Lee, C.-R.; Im, J.-H.; Lee, K.-B.; Moehl, T.; Marchioro, A.; Moon, S.-J.; Humphry-Baker, R.; Yum, J.-H.; Moser, J. E.; Grӓtzel, M.; Park, N.-G. Sci. Rep. 2012, 2, 591-597.
    [6] Heo, J. H.; Im, S. H.; Noh, J.; Mandal, T. N.; Lim, C. -S.; Chang, Je. A.; Lee, Y. H.; Kim, H. -J.; Sarkar, A.; Nazeeruddin, M. K.; Grätzel, M.; Seok, S. I. Nat. Photon. 2013, 7, 486-491.
    [7] Jeon, N. J.; Noh, J. H.; Yang, W. S.; Kim, Y. C.; Ryu, S.; Seo J.; Seok, S. I. Nature 2015, 517, 476-480.
    [8] Christians, J. A.; Fung, R. C.; Kamat, P. V. J. Am. Chem. Soc. 2013, 136, 758-764.
    [9] Qin, P.; Tanaka, S.; Ito, S.; Tetreault, N.; Manabe, K.; Nishino, H.; Nazeeruddin, M. K.; Grätzel, M. Nat. Commun. 2014, 5, 3834-3840.
    [10] Arora, N.; Dar, M. I.; Hinderhofer, A.; Pellet, N.; Schreiber, F.; Zakeeruddin, S. M.; Grätzel, M. Science 2017, 358, 768-771.
    [11] Subbiah, A. S.; Halder, A.; Ghosh, S.; Mahuli, N.; Hodes, G.; Sarkar, S. K. J. Phys. Chem. Lett. 2014, 5, 1748-1753.
    [12] Xie, F.; Choy, W. C.; Wang, H. C.; Li, X.; Zhang, S.; Hou, J. Adv. Mater. 2013, 25, 2051-2055.
    [13] Lampande, R.; Kim, G. W.; Boizot, J.; Kim, Y. J.; Pode, R.; Kwon, J. H. J. Mater. Chem. A 2013, 1, 6895-6900.
    [14] Shahnawaz, S.; Sudheendran Swayamprabha, S.; Nagar, M.R.; Yadav, R. A. K.; Gull, S.; Dubey, D. K.; Jou, J.-H. J. Mater. Chem. C 2019, 7, 7144-7158.
    [15] Souharce, B.; Kudla, C. J.; Forster, M.; Steiger, J.; Anselmann, R.; Thiem, H.; Scherf, U. Macromol. Rapid Commun. 2009, 30, 1258-1262.
    [16] Yang, W. S.; Noh, J. H.; Jeon, N. J.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. I. Science 2015, 348, 1234-1237.
    [17] Jung, E. H.; Jeon, N. J.; Park, E. Y.; Moon, C. S.; Shin, T. J.; Yang, T.-Y.; Noh, J. H.; Seo, J. Nature 2019, 567, 511-515
    [18] Heo, J. H.; Han, H. J.; Kim, D.; Ahn, T. K.; Im, S. H. Energy Environ. Sci. 2015, 8, 1602-1608.
    [19] Lee, J.; Lee, T. H.; Byranvand, M. M.; Choi, K.; Kim, H. I.; Park, S. A.; Kim, J. Y.; Park, T. J. Mater. Chem. A 2018, 6, 5538-5543
    [20] Troughton, J.; Hooper, K.; Watson T. M. Nano Energy 2017, 39, 60-68
    [21] Lu, K.-M.; Lee, K.-M.; Lai, C.-H.; Ting, C.-C.; Liu, C.-Y. Chem. Commun. 2018, 54, 11495-11498.
    [22] 國立中央大學化材所,2018年蔣佳樺之碩士論文
    [23] Cao, Y.; Li, Y.; Morrissey, T.; Lam, B.; Patrick, B. O.; Dvorak, D. J.; Xia, Z.; Kelly, T. L.; Berlinguette, C. P. Energy Environ. Sci. 2019, 12, 3502-3507
    [24] Lin, P.-H.; Lee, K.-M.; Ting, C.-C.; Liu, C.-Y. J. Mater. Chem. A 2019, 7, 5934-5937.
    [25] He, J.; Fang, W.-H.; Long, R. Chem. Sci. 2019, 10, 10079-10088
    [26] Rakstys, K.; Abate, A.; Dar, M. I.; Gao, P.; Jankauskas, V.; Jacopin, G.; Kamarauskas, E.; Kazim, S.; Ahmad, S.; Grätzel, M.; Nazeeruddin, M. K. J. Am. Chem. Soc. 2015, 137, 16172– 16178.
    [27] Chang, Y.-C.; Lee, K.-M.; Lai, C.-H.; Liu, C.-Y. Chem. Asian J. 2018, 13, 1510-1515
    [28] Molina-Ontoria, A.; Zimmermann, I.; Garcia-Benito, I.; Gratia, P.; Roldán-Carmona, C.; Aghazada, S.; Grätzel, M.; Nazeeruddin, M. K.; Martín, N. Angew. Chem. Int. Ed. 2016, 55, 6270-6274.
    [29] Garcia-Benito, I.; Zimmermann, I.; Urieta-Mora, J.; Aragó, J.; Molina-Ontoria, A.; Ortí, E.; Martín, N.; Nazeeruddin, M. K. J. Mater. Chem. A 2017, 5, 8317-8324.
    [30] Peng, Y.-K.; Lee, K.-M.; Ting, C.-C.; Hsu, M.-W.; Liu, C.-Y. J. Mater. Chem. A 2019, 7, 24765-24770.
    [31] Urieta-Mora, J.; García-Benito, I.; Molina-Ontoria, A.; Martín, N. Chem. Soc. Rev. 2018, 47, 8541-8571.
    [32] Chang, Y.-C.; Lee, K.-M.; Ting, C.-C.; Liu, C.-Y. Mater. Chem. Front. 2019, 3, 2041-2045.
    [33] Song, Y. T.; Lin, P.-H.; Liu, C.-Y. Adv. Synth. Catal. 2014, 356, 3761-3768.
    [34] Huang, J.-H.; Lin, P.-H.; Li, W.-M.; Lee, K.-M.; Liu, C.-Y. ChemSusChem. 2017, 10, 2284-2290.
    [35] Zhao, D.; Wang, W.; Yang, F.; Lan, J.; Yang, L.; Gao, G.; You, J. Angew. Chem. 2009, 48, 3296-3300.
    [36] Rungtaweevoranit, B.; Butsuri, A.; Wongma, K.; Sadorn, K.; Neranon, K.; Nerungsi, C.; Thongpanchang, T. Tetrahedron Lett. 2012, 53, 1816-1818.
    [37] Chang, S,-Y.; Lin, P.-H.; Liu, C.-Y. RSC Adv. 2014, 4, 35868-35878.
    [38] 國立中央大學化材所,2019年許勝杰之碩士論文
    [39] Do, H.-Q.; Khan, R. M. K.; Daugulis, O. J. Am. Chem. Soc. 2008, 130, 15185–15192.
    [40] Xie, Z.-Y.; Zhu, X.-J.; Guan, Y.-F.; Zhu, D.-R.; Hu, H.-W.; Lin, C.; Pan, Y.; Jiang, J.-L.; Wang, L.-Y. Org. Biomol. Chem. 2013, 11, 1390-1398.
    [41] Zimmermann, I.; Urieta-Mora, J.; Gratia, P.; Aragó, J.; Grancini, G.; Molina-Ontoria, A.; Ortí, E.; Martín, N.; Nazeeruddin, M. K. Adv. Energy Mater. 2017, 7, 1601674-1601681.
    [42] 國立中央大學化材所,2020年徐明偉之碩士論文

    QR CODE
    :::