跳到主要內容

簡易檢索 / 詳目顯示

研究生: 湯惠婷
Hui-Ting Tang
論文名稱: 光子晶體異常折射之能流研究
Anomalous Refraction in Photonic Crystal Analyzed By Energy Velocity
指導教授: 陳啟昌
Chii-Chang Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
畢業學年度: 93
語文別: 英文
論文頁數: 102
中文關鍵詞: 光子晶體異常折射能流
外文關鍵詞: photonic crystal, anomalous refraction, energy flux
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來對於光子晶體異常折射現象的研究是很熱門的研究課題,因為若左手物質和負折射現象存在,這代表光可以突破繞射極限或反司乃爾定律•••等不尋常光的現象,使很多人著手於模擬與實驗來驗證負折射和左手物質存在的可能性,但現今仍有許多的困難存在。
    現今很少人去研究光在光子晶體中的走向,因為光射入光子晶體後,可能會出現反射、散射的情況發生,所以現今研究光在光子晶體的走向,都是計算出光子晶體的能帶結構後,得到等頻率面,對等頻率面取梯度,計算出群速度的方向,再依群速度的走向,來判斷光進入光子晶體中的走向。
    本論文是提出一個新的想法來定義光在光子晶體中的走向,相關討論詳見第三章。在第二章裡介紹我們所使用的模擬方法,分別為有限時域差分法和平面波展開法。第三章分為三個部分,第一部分是用部分能帶的理論去看光在光子晶體中的走向,發現平面波大角度入射進光子晶體達穩態後,會有類似負折射的現象產生。第二部分是用計算等頻率面去預測光在光子晶體中的走向,也是在平面波於大角度入射光子晶體達穩態後,發現光在光子晶體中所走的方向不吻合等頻率面所算出的角度。第三部分是平面波入射進光子晶體內部達穩態後,計算在光子晶體內的能流分佈,在用光線追跡的方法,去預測當點光源入射時,光會在光子晶體中的走向,與有限時域差分法所計算出的點光源的場圖去做對
    照,發現結果是相當吻合的。因此本論文的方法可有效應用於分析光子晶體中光傳播的異常折射現象。


    Recently, the abnormal refraction phenomena of the light propagating in the photon crystals have attracted many attentions. The so-called left-handed materials (LHMs) possess some peculiar properties for the electromagnetic
    waves such as the inverse Snell’s law, the reversed Doppler shift, and the reversed Cherenkov radiation, etc. Many people are devoted to simulate and fabricate the left-handed materials and photonic crystals to study the abnormal properties. However, some arguments are still left unsolved.
    In the literature, the light propagation in the photonic crystals (PCs) cannot be stated by the ray-tracing method due to the complex scattering in the photonic crsytals. The refraction direction of the light propagating in the PCs and materials interface is generally predicted by using the equal frequency surface (EFS). One can calculate the band structure of the PC structure to obtain the EFS. Group velocity direction (Vg) is obtained by the
    gradient of the EFS.
    We found the fact that there is difference between the light propagation direction and the group velocity direction. In this thesis, we propose to use the energy velocity direction to define light propagation direction in PCs.
    This will be presented in Chapter 3-2-3. We will introduce the FDTD and PWE simulation methods in Chapter 2. The third section can be split into 3
    parts. The first part shows the view of point of the partial band gap to state the light propagation in PCs. The second part shows the EFS method. The relation between the incident angles and the refraction angles of Vg is
    obtained. The result of the ray-tracing and the FDTD methods can be proved to be inconsistent. In the third part, we calculate the relation between the incident and the refraction angles by calculating the energy velocity (Ve)
    direction of the light propagating in photonic crystals. We use this relation into the ray-tracing to analyze the imaging phenomena of the point source by the PC slab. The results show an excellent agreement. The results imply that
    the ray-tracing can be used to analyze the imaging phenomena of the point source by the PC slab.

    Abstract ....................................................................................... Ⅰ Acknowledgements ..................................................................... Ⅴ Contents....................................................................................... Ⅵ List of figures .............................................................................. Ⅷ List of table.............................................................................. ⅩⅥ Chapter 1. Introduction ............................................................... 1 1-1. About Photonic Crystals ................................................................. 1 1-1-1. Photonic Crystals Defects .......................................................................... 3 1-1-2. Photonic Crystals in Integrated Optical Circuits........................................ 4 1-1-2-1 PCs Waveguides............................................................................... 4 1.1.2.2 Resonant Cavities in Photonic Crystals ............................................ 5 1-1-3. Photonic Crystals in Nature........................................................................ 6 1-2. Anomalous Refraction in Photonic Crystals ................................. 10 1-2-1. Flat Slab Imaging ..................................................................................... 13 1-2-2. Transmission of Plane Waves in Photonic Crystals ................................. 14 1-3. Motivation ................................................................................. 15 Chapter 2. Simulation Methods................................................. 17 2-1. Finite-Difference Time-Domain (FDTD)..................................... 17 2-1-1. FDTD’s Principle ................................................................................... 19 2-1-1-1. Discretization of Electromagnetic Waves.................................... 20 2-1-1-2. Stability Condition ...................................................................... 24 2-1-2. Perfectly Matched Layer (PML)............................................................ 28 2-2. Plane -Wave Expansion (PWE).................................................... 31 2-2-1. Brillouin Zone ........................................................................................ 31 2-2-2. Bloch Theorem....................................................................................... 32 2-3 Poynting theorem...........................................................................39 Chapter 3. Simulation process, Results and Discussions......... 40 3-1. Structures of Photonic Crystals (PCs) .......................................... 40 3-2. Simulation Discussions ................................................................ 41 3-2-1. Partial Band Gap .................................................................................... 41 3-2-2. Equal Frequency Surface (EFS)............................................................. 53 3-2-3. Total Energy Flux Vector........................................................................ 61 3-2-4. Ray-tracing and Point Source Image...................................................... 67 Chapter 4 Conclusion ................................................................. 81 Chapter 5 Future work............................................................... 85 References.................................................................................... 86

    References
    [1] E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State
    Physics and Electronics,” Phys. Rev. Lett., Vol. 58, No. 20, pp.
    2059–2062, May 1987
    [2] S. John, “Strong localization of photons in certain disordered
    dielectric superlattices,” Phys. Rev. Lett., Vol. 58, No. 23 , pp. 2486–2489,
    June 1987
    [3] V. Kuzmiak, “Localized defect modes in a two-dimensional triangular
    photonic crystal,” Phys. Rev. B, Vol. 57, No. 24, June 1998
    [4] E. R. Brown, C. D. Parker, E. Yablonovitch, “Radiation properties of a
    planar antenna on a photonic-crystal substrate,” J. Opt. Soc. Am. B, Vol.
    10, No. 2, February 1993
    [5] H. Y. Ryu, J. K. Hwang, Y. H. Lee, “Effect of size nonuniformities on
    the band gap of two-dimensional photonic crystals,” Phys. Rev. B, Vol. 59,
    No. 8, February 1999
    [6] M. Qiu, S. He, “Large complete band gap in two-dimensional
    photonic crystals with elliptic air holes,” Phys. Rev. B, Vol. 60, No. 15,
    October 1999
    87
    [7] M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. D. Joannopoulos,
    E. P. Ippen, H. I. Smith, “A three-dimensional optical photonic crystal
    with designed point defects,” Nature, Vol. 429, pp. 538–542, June 2004
    [8] Fleming, J. G., Lin. S. Y., “Three-dimensional photonic crystal with a
    stop band from 1.35 to 1.95 m,”  Opt. Lett., Vol. 24, No. 1, pp. 49–51,
    January 1999
    [9] S. Noda, K. Tomoda, N. Yamamoto, A. Chutinan, “Full
    Three-Dimensional Photonic Bandgap Crystals at Near-Infrared
    Wavelengths” , Science, Vol. 289, pp. 604–606, July 2000
    [10] M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, A. J.
    Turberfield, “Fabrication of photonic crystals for the visible spectrum by
    holographic lithography,” Nature, Vol. 404, pp. 53–56, March 2000
    [11] Y. A. Vlasov, X. Z. Bo, J. C. Sturm, D. J. Norris, “On-chip natural
    assembly of silicon photonic bandgap crystals,” Nature, Vol. 414, pp.
    289–293, November 2001
    [12] A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W.
    Leonard, C. Lopez, F. Meseguer, H. Miguez., J. P. Mondia, G. A. Ozin,
    O. Toader, H. M. van Driel, “Large scale synthesis of a silicon photonic
    crystal with a complete three-dimensional bandgap near 1.5
    88
    micrometers,” Nature, Vol. 405, pp. 437–440, May 2000
    [13] C. C. Cheng, A. Scherer, “Fabrication of photonic band-gap
    crystals,” J. Vac. Sci. Technol. B, Vol. 13, pp. 2696–2700 November
    1995
    [14] K. Aoki, H. T. Miyazaki, H. Hirayama, K. Inoshita, T. Baba, N.
    Shinya, Y. Aoyagi, “Three-dimensional photonic crystals for optical
    wavelengths assembled by micromanipulation,” Appl. Phys. Lett., Vol. 81,
    No. 17, October 2002
    [15] S. R. Kennedy, M. J. Brett, “Fabrication of Tetragonal Square Spiral
    Photonic Crystals,” Nano Lett., Vol. 2, No. 1, pp. 59–62, 2002
    [16] E. Kuramochi1, M. Notomi1, T. Kawashima, J. Takahashi,
    C. Takahashi, T. Tamamura1, S. Kawakami, “A new fabrication
    technique for photonic crystals: Nanolithography combined with
    alternating-layer deposition,” Opt. Quant. Elec., Vol 34, No. 1–3, pp.
    53–61, January 2002
    [17] T. Sato, K. Miura1, N. Ishino1, Y. Ohtera1, T. Tamamura,
    S. Kawakami, “Photonic crystals for the visible range fabricated by
    89
    autocloning technique and their application,” Opt. Quant. Elec.,Vol. 34,
    No. 1–3, pp. 63–70, January 2002
    [18] http://ab-initio.mit.edu/photons/
    [19] H. Hirayama, T. Hamano, Y. Aoyagi, “Novel surface emitting laser
    diode using photonic band-gap crystal cavity,” Appl. Phys. Lett., Vol. 69,
    pp. 791–793, August 1996.
    [20] J. D. Joannopoulos, P. R. Villeneuve, S. Fan, “Photonic crystals:
    Putting a new twist on light,” Nature, Vol. 386, pp. 143–149 , March
    1997
    [21] J. C. Knight, T. A. Birks, P. St. J. Russell, D. M. Atkin, “All-silica
    single-mode optical fiber with photonic crystal cladding,” Opt. Lett., Vol.
    21, No. 19, pp. 1547–1549, October 1996
    [22] T. F. Krauss, R. M. De La Rue, S. Brand, “Two-dimensional
    photonic-bandgap structures operating at near-infrared wavelengths,”
    Nature, Vol. 383, pp.699–702, 1996
    [23] D. Labilloy, H. Benisty, C. Weisbuch, T. F. Krauss, R. M. De La
    Rue, V. Bardinal, R. Houdré, U. Oesterle, D. Cassagne, C. Jouanin,
    “Quantitative measurement of transmission, reflection, and diffraction of
    twodimensional photonic band gap structures at near-infrared
    90
    wavelengths,” Phys. Rev. Lett., Vol. 79, No. 21, pp. 4147–4150,
    November 1997
    [24] S. Y. Lin, E. Chow, V. Hietala, P. R. Villeneuve, & J. D.
    Joannopoulos, “Experimental demonstration of guiding and bending of
    electromagnetic waves in a photonic crystal,” Science, Vol. 282, No.
    5387, pp. 274–276, October 1998
    [25] T. Baba, N. Fukaya, & J. Yonekura, “Observation of light
    propagation in photonic crystal optical waveguides with bends,” Electron.
    Lett., Vol. 35, pp. 654–655, 1999
    [26] M. Notomi, “Extremely large group-velocity dispersion of
    line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett., Vol.
    87, No. 25, pp. 253902-1–4, December 2001
    [27] Y. Sugimoto, N. Ikeda, N. Carlsson, K. Asakawa, N. Kawai and K.
    Inoue, “Fabrication and characterization of different types of
    two-dimensional AlGaAs photonic crystal slabs,” J. Appl. Phys., Vol. 91,
    No. 3, pp. 922–929, February 2002
    [28] O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D.
    Dapkus, I. Kim, “Two-dimensional photonic band-gap defect mode
    laser,” Science, Vol. 284, pp. 1819–1821, June 1999
    91
    [29] S. Noda, M. Yokoyama, M. Imada, A. Chutinan, M. Mochizuki,
    “Polarization mode control of twodimensional photonic crystal laser by
    unit cell structure design,” Science, Vol. 293, pp. 1123–1125, August
    2001
    [30] D. Labilloy, et al., “Demonstration of cavity mode between
    two-dimensional photonic-crystal mirrors,” Electron. Lett., Vol. 33, pp.
    1978–1980, 1997
    [31] S. Noda, A. Chutinan, M. Imada, “Trapping and emission of photons
    by a single defect in a photonic bandgap structure,” Nature, Vol. 407, pp.
    608–610, October 2000
    [32] K. Aoki, H. T. Miyazaki, H. Hirayama, K. Inoshita, T. Baba, K.
    Sakoda, N. Shinya, Y. Aoyagi, “Microassembly of semiconductor
    three-dimensional photonic crystals,” nature materials, Vol. 2, February
    2003
    [33] Gérard Tayeb, Boris Gralak, Stefan Enoch, “Structural Colors
    in Natureand Butterfly-Wing Modeling,” Optics and Photonics News, pp.
    38–49, February 2003
    [34] L. P. Biró, Z. Bálint, K. Kertész, Z. Vértesy, G. I. Márk,1 Z. E.
    Horváth, J. Balázs, D. Méhn, I. Kiricsi, V. Lousse, J.-P. Vigneron, “Role
    92
    of photonic-crystal-type structures in the thermal regulation of a Lycaenid
    butterfly sister species pair,” Phys Rev E., Vol. 67, No.021907, February
    2003
    [35] R.C. McPhedran et al. , “Structural colours through photonic crystals
    ,” Physica B, Vol. 338, pp. 182–185, 2003
    [36] A. R. Parker, R. C. McPhedran, D. R. McKenzie, L. C. Botten, N. A.
    P. Nicorvici, “Aphrodite’s iridescence,” Nature, Vol. 409, pp.
    36–37 ,January 2001
    [37] V.G. Veselago, Sov. Phys. Usp., Vol. 10, pp. 509, 1968
    [38] J. B. Pendry, A. J. Holden, D. J. Robbins, W. J. Stewart, “Magnetism
    from Conductors and Enhanced Nonlinear Phenomena,” IEEE Trans.
    Microwave Theory Tech., Vol. 47, No.11, pp. 2075–2084, November
    1999
    [39] D. R. Smith, Willie J. Padilla, D. C. Vier, S. C. Nemat-Nasser, S.
    Schultz, “Composite Medium with Simultaneously Negative Permeability
    and Permittivity,” Phys. Rev. Lett., Vol. 84, No. 18, pp. 4184–4187, May
    2000
    [40] P. LeClair, H. J. M. Swagten, J. T. Kohlhepp, R. J. M. van de
    Veerdonk, W. J. M. de Jonge, “Apparent Spin Polarization Decay in
    93
    Cu-Dusted Co_Al2O3_Co Tunnel Junctions,” Phys. Rev. Lett., Vol.84,
    No. 13, pp. 2933–2936, March 2000
    [41] R. A. Shelby, D.R. Smith, and S. Schultz, “Experimental
    Verification of a Negative Index of Refraction,” Science, Vol. 292, pp.
    77–79, April 2001
    [42] J. B. Pendry, “Negative Refraction Makes a Perfect Lens,” Phys. Rev.
    Lett., Vol. 85, No. 18, pp.3966–3969 (2000).
    [43] P. Markos and C.M. Soukoulis, “Numerical studies of left-handed
    materials and arrays of split ring resonators,” Phys. Rev. E, Vol. 65, No.
    036622, March 2002
    [44] P. Markos, I. Rousochatzakis, and C.M. Soukoulis, “Transmission
    losses in left-handed materials,” Phys. Rev. E, Vol. 66, No. 045601(R),
    October 2002
    [45] R.B. Greegor, C.G. Parazzoli, K. Li, M.H. Tanielian, “Origin of
    dissipative losses in negative index of refraction materials,” Appl. Phys.
    Lett., Vol. 82,No. 14, pp. 2356–2358, April 2003
    [46] S. Foteinopoulou, E.N. Economou, and C.M. Soukoulis, “Refraction
    in Media with a Negative Refractive Index,” Phys.
    Rev. Lett., Vol. 90, No.10, pp. 107402–1–4 , March 2003
    94
    [47] J. Pacheco, Jr., T.M. Grzegorczyk, T.B.I. Wu, Y. Zhang, and J.A.
    Kong, “Power Propagation in Homogeneous Isotropic
    Frequency-Dispersive Left-Handed Media,” Phys. Rev. Lett., Vol. 89,
    No.25, pp. 257401–1–4, December 2002
    [48] Y. Zhang, B. Fluegel, and A. Mascarenhas, “Total Negative
    Refraction in Real Crystals for Ballistic Electrons and Light,” Phys. Rev.
    Lett., Vol. 91, No. 15, pp. 157404–1–4, October 2003
    [49] D.R. Smith, D. Schurig, “ElectromagneticWave Propagation in
    Media with Indefinite Permittivity and Permeability Tensors,” Phys. Rev.
    Lett., Vol. 90, No.7, pp. 077405–1–4, February 2003
    [50] A. A. Houck, J. B. Brock, I. L. Chuang, “Experimental Observations
    of a Left-Handed Material That Obeys Snell''s Law,” Phys. Rev. Lett., Vol.
    90, No. 13, pp. 137401–1–4, April 2003
    [51] J. Li, L. Zhou, C. T. Chan, P. Sheng, “Photonic Band Gap from a
    Stack of Positive and Negative Index Materials,” Phys. Rev. Lett., Vol. 90,
    No. 8, 083901–1–4, February 2003
    [52] R. Ziokowski ,E. Heyman, “Wave propagation in media having
    negative permittivity and permeability,” Phys. Rev. E, Vol. 64, pp.
    056625–1–15, October 2001
    95
    [53] R. Andrews, E. R. Pike, Sarben Sarkar, “Theory of photon statistics
    and squeezing in quantum interference of a sub-threshold parametric
    oscillator,” Opt. Express, Vol. 11, pp. 7–13, January 2003
    [54] G. Shvets, “Photonic approach to making a material with a negative
    index of refraction,” Phys. Rev. B, Vol. 67, 0351091–1–8, 2003
    [55] V. A. Podolskiy, A.K. Sarychev, and V.M. Shalaev, “Plasmon
    modes and negative refraction in metal nanowire composites,” Opt.
    Express, Vol. 11, No.7, pp. 735–745, April 2003
    [56] S. A. Ramakrishna and J.B. Pendry, “Removal of absorption and
    increase in resolution in a near-field lens via optical gain,” Phys. Rev. B,
    Vol. 67, 201101–1–4, May 2003
    [57] A. A. Zharov, I. V. Shadrivov, Y. S. Kivshar, “Nonlinear Properties
    of Left-Handed Metamaterials,” Phys. Rev. Lett., Vol. 91, No. 3,
    037401–1–4, July 2003
    [58] R. Merlin, “Analytical solution of the almost-perfect-lens problem,”
    Appl. Phys. Lett., Vol. 84, No. 8, pp. 1290–1292, February 2004
    [59] L. Chen, S. He, and L. Shen, “Finite-Size Effects of a Left-Handed
    Material Slab on the Image Quality,” Phys. Rev. Lett., Vol. 92, No.10, pp.
    107404–1–4, March 2004
    [60] D.R. Smith, D. Schurig, J.J. Mock, P. Kolinko, and P. Rye, “Partial
    focusing of radiation by a slab of indefinite media,” Appl. Phys. Lett., Vol.
    96
    84, No.13 , pp. 2244–2266, March 2004
    [61] Z. Liu, N. Fang, T.-J. Yen, X. Zhang, “Rapid growth of evanescent
    wave by a silver superlens,” Appl. Phys. Lett. ,Vol. 83, No.25, pp.
    5184–5186, December 2003
    [62] A. Grbic, G. V. Eleftheriades, “Overcoming the Diffraction Limit
    with a Planar Left-Handed Transmission-Line Lens,” Phys. Rev. Lett.,
    Vol. 92, No.11, pp. 117403–1–4, March 2004
    [63] A. N. Lagarkov, V. N. Kissel, “Near-Perfect Imaging in a Focusing
    System Based on a Left-Handed-Material Plate,” Phys. Rev. Lett., Vol. 92,
    No. 7, pp. 077401–1–4, February 2004
    [64] G.W. ’t Hooft, “Comment on “Negative Refraction Makes
    a Perfect Lens,” Phys. Rev. Lett., Vol. 87, No. 24, pp. 249701, December
    2001
    [65] H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T.
    Sato, S. Kawakami, “Superprism phenomena in photonic crystals,” Phys.
    Rev. B, Vol. 58, No. 16, pp. R10 096–099, October 1998
    [66] M. Notomi, “Theory of light propagation in strongly modulated
    photonic crystals: Refractionlike behavior in the vicinity of the photonic
    band gap,” Phys. Rev. B, Vol. 62, No.16, pp. 10 696–705, October 2000
    97
    [67] B. Gralak, S. Enoch, G. Tayeb, “Anomalous refractive properties of
    photonic crystals,” J. Opt. Soc. Am. A, Vol. 17, No. 6, pp. 1012–1020,
    June 2000
    [68] S. Foteinopoulou ,C.M. Soukoulis, “Negative refraction and
    left-handed behavior in two-dimensional photonic crystals,” Phys. Rev. B,
    Vol. 67, pp. 235107–1–5, June 2003
    [69] P. V. Parimi, W. T. Lu, P. Vodo, J. Sokoloff, J. S. Derov, S. Sridhar,
    “Negative Refraction and Left-Handed Electromagnetism in Microwave
    Photonic Crystals,” Phys. Rev. Lett., Vol. 92, No. 12, pp. 127401–1–4,
    March 2004
    [70] C. Luo, S. G. Johnson, J. D. Joannopoulos, J. B. Pendry, “All-angle
    negative refraction without negative effective index,” Phys. Rev. B, Vol.
    65, pp. 201104–1–4, May 2002
    [71] E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, C.M. Soukoulis,
    “Negative refraction by photonic crystals,” Nature, Vol. 423, pp.
    604–605, June 2003
    [72] P.V. Parimi, W.T. Lu, P. Vodo, S. Sridhar “Imaging by flat lens
    using negative refraction,” Nature, Vol. 426, pp. 404, November 2003
    [73] E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, C.M. Soukoulis,
    98
    “Subwavelength Resolution in a Two-Dimensional
    Photonic-Crystal-Based Superlens,” Phys. Rev. Lett., Vol. 91, No. 20,
    207401–1–4, November 2003
    [74] X. Zhang, “Absolute negative refraction and imaging of unpolarized
    electromagnetic waves by two-dimensional photonic crystals,” Phys. Rev.
    B, Vol. 70, pp. 205102–1–6, November 2004
    [75] C. Luo, S. G. Johnson, J. D. Joannopoulos, J. B. Pendry,
    “Subwavelength imaging in photonic crystals,” Phys. Rev. B, Vol. 68,
    045115–1–15, July 2003
    [76] Z. Y. Li, L. L. Lin, “Evaluation of lensing in photonic crystal slabs
    exhibiting negative refraction,” Phys. Rev. B, Vol. 68, 245110–1–7 ,
    December 2003
    [77] J. D. Joannopolous, R. D. Meade, J. N. Winn, Photonic Crystals,
    Princeton University Press, Princeton, 1995
    [78] V. M. Agranovich, Y. R. Shen, R. H. Baughman, A. A. Zakhidov,
    “Linear and nonlinear wave propagation in negative refraction
    metamaterials,” Phys. Rev. B, Vol. 69, pp. 165112–1–7, April 2004
    [79] J. M. Williams, “Some Problems with Negative Refraction,” Phys.
    Rev. Lett., Vol. 87, No.24, pp. 249703, December 2001
    99
    [80] N. Garcia1, M. Nieto-Vesperinas, Madrid, “Left-Handed Materials
    Do Not Make a Perfect Lens,” Phys. Rev. Lett., Vol. 88, pp. 207403–1–4,
    May 2002
    [81] A. L. Pokrovsky, A. L. Efros, “Electrodynamics of Metallic Photonic
    Crystals and the Problem of Left-Handed Materials,” Phys. Rev. Lett., Vol.
    89, 093901–1–4, August 2002
    [82] C. Luo, S. G. Johnson, J. D. Joannopoulos, “All-angle negative
    refraction in a three-dimensionally periodic photonic crystal,” Appl. Phys.
    Lett., Vol. 83, No.13, 2352–2354, September 2002
    [83] C. Luo, S. G. Johnson, J. D. Joannopoulos, J. B. Pendry, “Negative
    refraction without negative index in metallic photonic crystals,” Opt.
    Express, Vol. 11, No.7, pp. 746–754, March 2003
    [84] Kenji Kawano, Tsutomu Kitoh, Introduction to Optical Waveguide
    Analysis…Solving Maxwell’s Equation and the Schrödinger Equation,
    John Wiley & Sons., Inc., 2001.
    [85] J.-P. Berenger, “A Perfectly Matched Layer for the Absorption of
    Electromagnetic Waves,” Jour. Of comp. Phys., Vol. 114, pp. 185–200,
    July 1994
    [86] K. S. Yee., “Numerical Solution of Initial Boundary Value Problems
    100
    Involving Maxwell’s Equations in Isotropic Media,” IEEE, Trans.
    Antennas Propag., Vol. 14, January 1966
    [87] O. Ramadan, “State-space FDTD implementation of anisotropic
    perfectly matched layer,” Electron. Lett., Vol. 39, No. 13, June 2003
    [88] David K. Cheng, Field and Wave Electromagnetics,
    Addison–Wesley publishing Company, 2nd, 1989.
    [89] J.-P. Berenger, “Three-Dimensional Perfectly Matched Layer for
    Electromagnetic Waves,” Jour. Of Computational Physics, Vol. 127, No.
    0181, pp. 363–379, October 1997
    [90] D. T. Prescott, N. V. Shuley, “Reflection Analysis of FDTD
    Boundary Conditions—Part II: Berenger’s PML Absorbing Layers,”
    IEEE Transactions on microwave theory and technique, Vol.45 , No.8 ,
    pp. 1171–1178, August 1997
    [91] G. Mur, “Absorbing boundary conditions for the finite difference
    approximation of the time-domain electromagnetic-field equations,”
    IEEE Trans. Electromagn. Compat., vol. 23, pp. 377-382, Nov. 1981
    [92] M. Plihal, A. A. Maradudin, “Photonic band structure of
    two-dimensional systems: The triangular,” Phys. Rev. B, Vol. 44, No. 16,
    pp. 8565–8571, October 1991
    101
    [93] K. Sakoda, Optical Properties of Photonic Crystal, Springer, 2001,
    [94] Charles Kittel, Introduction to Solid State Physics, John Wiley &
    Sons, Inc., 7th, 1953, 1956, 1966, 1971, 1976, 1986, 1996
    [95] H. T. Chien, H. T. Tang, C. H. Kuo, C. C. Chen, Z. Ye, “Directed
    diffraction without negative refraction,” Phys. Rev. B, Vol. 70, pp.
    113101–1–4, September 2004
    [96] C.-H. Kuo and Z. Ye, cond-mat/0310423 (unpublished);
    cond-mat/0312288 (unpublished)
    [97] L. S. Chen, C. H. Kuo, Z. Ye, “Guiding optical flows by photonic
    crystal slabs made of dielectric cylinders,” Phys. Rev. E, Vol. 69,
    066612–1–6, June 2004
    [98] Z. Ye, A note on the group and energy velocities of waves in crystals,
    unpublished.
    [99] A. Yariv, P. Yeh, Optical waves in crystals, John Wiley & Sons, Inc.,
    Taipei, 1984
    [100] Z. Ye (unpublished); C.-H. Kuo and Z. Ye, cond-mat/0405008
    (unpublished)
    [101] X. Yu, S. Fan, “Bends and splitters for self-collimated beams in
    photonic crystals,” Appl. Phys. Lett., Vol. 83, No. 16, pp. 3251–3253,
    102
    October 2003
    [102] J. Witzens, M. Loncar, A. Scherer, “Self-collimation in planar
    photonic crystals”. Quantum electronics., Vol. 8, No. 6, pp. 1246-1257 ,
    November/ December 2002

    QR CODE
    :::