跳到主要內容

簡易檢索 / 詳目顯示

研究生: 蔡長江
Chang-jiang Tsai
論文名稱: 異質網路下以感知毫微微基地台資源配置之干擾消除探討
Interference Mitigation for Cognitive Femto Base Station Resource Management in Heterogeneous Networks
指導教授: 陳永芳
Yung-fang chen
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 通訊工程學系
Department of Communication Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 43
中文關鍵詞: 干擾消除感知無線電資源配置
外文關鍵詞: Interference Mitigation, Cognitive Radio, Resource Allocation
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文針對異質網路之系統下,考慮使系統頻譜效率最大化的問題。在第四代行動通訊中,異質網路被視為是一個主要的方案;由於巨微基地台(Macro base station)和毫微微基地台(Femto base station)使用相同的頻帶,所以衍生出了同頻帶干擾(Inter-cell Interference)的問題,如何解決基地台之間的干擾會是個重要的問題。因此加入了感知無線電(Cognitive Radio)搭配毫微微基地台的技術來改進基地台之間的同頻帶干擾的傳輸量使得系統頻譜效率最大化的概念,進而增加傳輸量。本文研究方向主要為在LTE-Advanced異質網路系統的資源配置。
    感知毫微微基地台的技術被提出解決同頻帶干擾的問題。主要的特性是毫微微基地台利用感知無線電之技術頻譜偵測,偵測所有巨微基地台使用者(Macro user)使用子載波的情況,根據頻譜偵測的結果來決定毫微微基地台可使用的子載波,再根據訊號雜訊比值(SINR)最好的毫微微基地台使用者來分配子載波並搭配子載波注水功率演算法,來達到干擾巨微基地台使用者效能最小化之情況下,使毫微微基地台使用者效能最大化。
    本論文提出的毫微微基地台搭配感知無線電技術概念同時考慮巨微基地台使用者和毫微微基地台使用者效能的公平性。在模擬結果顯示出本篇論文的方法勝過於現存的演算法。


    In this thesis, the problem for maximizing the system sum spectral efficiency in heterogeneous networks is considered. The major problem in heterogeneous networks is the cross-tier interference because the spectra is shared between the macro base station and femto base stations. In order to resolve the interference problem, we propose the resource allocation of femto base stations with the application of cognitive radio (CR) technique in order to maximize the spectral efficiency of all the system macro base station and femto base stations while simultaneously decrease the interference caused from femto base station to macro users. The proposed scheme comprises two steps: spectrum sensing and resource allocation. The femto base stations are capable of finding the available subcarriers using cognitive radio techniques. It can avoid the femto base station allocate the subcarrier which is unoccupied by near macro users in order to reduce the strong interference to macro users. After determining the subcarriers which is occupied by near macro users, the femto base stations further distinguish the qualified subcarriers according to the signal to interference plus noise ratio (SINR) to its serving femto users and the transmit power is allocated over the subcarriers by water-filling algorithm. Finally, simulation results also reveal that the proposed schemes outperform the existing algorithms.

    論文摘要 i Abstract iii 致謝 v Contents vii List of Figures ix List of Tables x Chapter1. Introduction - 1 - 1.1. Heterogeneous Networks - 1 - 1.2. Femto Base Station - 2 - 1.3. Cognitive Radio - 3 - 1.4. Review of Literature - 4 - 1.5. Contribution - 6 - 1.6. Organization - 7 - Chapter2. System Model and Problem Formulation - 8 - 2.1. System Model - 8 - 2.2. Problem Formulation - 11 - Chapter3. Resource Allocation Schemes - 13 - 3.1. Slot Structure of Spectrum Sensing - 13 - 3.2. Proposed Resource Allocation Scheme - 15 - 3.2.1. Macro Base Station Resource Allocation - 15 - 3.2.2. Femto Base Station Spectrum Sensing - 21 - 3.2.3. Femto Base Station Resource Allocation - 24 - Chapter4. Simulation Results - 29 - 4.1. Simulation model - 29 - 4.2. Performance of Proposed Scheme - 32 - Chapter5. Conclusions - 39 - Reference - 40 -

    [1] D. Astély, E. Dahlman, A. Furuskar, Y. Jading, M. Lindstrom, and S. Parkvall, “LTE: the evolution of mobile broadband,” IEEE Commun. Mag., pp.44-51, April. 2009.
    [2] A. Ghosh, R. Ratasuk, B. Mondal, N. Mangalvedhe, and T. Thomas, “LTE-advanced: next-generation wireless broadband technology,” IEEE Trans. Wireless Commun., vol. 17, pp.10-22, June. 2010.
    [3] I. F. Akyildiz, D. M. Gutierrez-Estevez, and E. C. Reyes, “The evolution to 4G cellular systems: LTE-Advanced,” J. Physical Commun., vol. 3, pp. 217-244. 2010.
    [4] A. Damnjanovic, J. Montojo, W. Yongbin, J. Tingfang, L. Tao, M. Vajapeyam, Y. Taesang, S. Osok, and D. Malladi, "A survey on 3GPP heterogeneous networks," IEEE Wireless Commun. vol.18, no.3, pp.10-21, June. 2011.
    [5] Y. L. Lee, T. C. Chuah, J. Loo, and A. Vinel, “Recent Advances in Radio Resource Management for Heterogeneous LTE/LTE-A Networks,” IEEE Commun. Surveys and Tutorials, vol. PP, no. 99, pp. 1-39, June. 2014.
    [6] A. BouSaleh, S. Redana, B. Raaf, and J. Hämäläinen, “Comparison of relay and pico eNB deployments in LTE-advanced,” in Proc. IEEE VTC-FALL, pp.1-5, 20-23, Sept. 2009.
    [7] V. Chandrasekhar, and J. G. Andrews, “Femtocell Networks: A Survey,” IEEE Commun. Mag., vol. 46, no. 9, pp. 59-67, Sept. 2008.
    [8] T. Zahir, K. Arshad, A. Nakata, and K. Moessner, “Interference Management in Femtocells,” IEEE Commun. Surveys and Tutorials, vol. 15, no. 1, pp. 293-311, First Quarter. 2012.
    [9] J. Mitola, and G. Q. Maguire, “Cognitive radios: making software radios more personal,” IEEE Personal Commun., vol. 6, no. 4, pp. 13-18, Aug. 1999.
    [10] I. F. Akyildiz, W. -Y. Lee, M. C. Vuran, and S. Mohanty, “A survey on spectrum management in cognitive radio networks,” IEEE Commun. Mag., vol.46, no.4, pp.40-48, April 2008.
    [11] T. Yucek, and H. Arslan “A survey of spectrum sensing algorithms for cognitive radio applications,” IEEE Commun. Surveys and Tutorials, vol. 11, no. 1, pp. 116-130, First Quarter. 2009.
    [12] V. Chandrasekhar, and J. G. Andrews, “Spectrum allocation in tiered cellular networks," IEEE Trans. Commun., vol. 57, no. 10, pp. 3059-3068, Oct. 2009.
    [13] Y. Shi, A. B. MacKenzie, L. A. DaSilva, K. Ghaboosi and M. Latva-aho, "On Resource Reuse for Cellular Networks with Femto- and Macrocell Coexistence," in Proc. IEEE GLOBECOM, pp. 1-6, Dec. 2010.
    [14] D. Lopez-Perez, A. Valcarce, and G. de la Roche, “OFDMA femtocells:a roadmap on interference avoidance,” IEEE Commun. Mag., vol. 47, no. 9, pp. 41–48, Oct. 2009.
    [15] 3GPP TR 25.967 V9.0.0, “Home node B radio frequency (RF) requirements (FDD)," 2009.
    [16] B. Li, Y. Zhang; G. Cui, W. Wang, J. Duan, and W. Chen, “Interference coordination based on hybrid resource allocation for overlaying LTE macrocell and femtocell,” in Proc. IEEE PIMRC, pp. 167-171, Sept. 2011.
    [17] N. K. Gupta, and A. Banerjee “Power and subcarrier allocation for OFDMA femto-cell based underlay cognitive radio in a two-tier network,” in Proc. IEEE IMSAA, pp. 1-6, Dec. 2011.
    [18] F. Cao, and Z. Fan, "Power Loading and Resource Allocation for Femtocells," in Proc. IEEE VTC, pp.15-18, May. 2011.
    [19] Y. Y. Li, M. Macuha, E. S. Sousa, T. Sato, and M. Nanri, “Cognitive interference management in 3g femtocells,” in Proc. IEEE PIMRC, pp. 1118–1122, Sept. 2009.
    [20] D. Oh, H. Lee, and Y. Lee, “Cognitive radio based femtocell resource allocation,” in Proc. IEEE ICTC, pp. 274–279, Nov. 2010.
    [21] D. Oh, and Y. Lee, “Cognitive radio based resource allocation in femto-cells,” IEEE J. Commun. and Networks, vol. 14, no. 3, pp. 252-256, June 2012.
    [22] Y. Ma, T. Lv, J. Zhang, H. Gao, and Y. Lu, “Cognitive interference mitigation in heterogeneous femto-macro cell networks,” in Proc. IEEE PIMRC, pp. 2131-2136, Sept. 2012.
    [23] S.-Y. Lien, C.-C. Tseng, K.-C. Chen, and C.-W. Su, “Cognitive radio resource management for QoS guarantees in autonomous femtocell networks," in Proc. IEEE ICC, pp. 1-6, May. 2010.
    [24] S.-Y. Lien, Y.-Y, Lin, and K.-C. Chen, “Cognitive and Game-Theoretical Radio Resource Management for Autonomous Femtocells with QoS Guarantees,” IEEE Trans. Wireless Commun., vol. 10, no. 7, pp. 2196-2206, July 2011.
    [25] Evolved Universal Terrestrial Radio Access (E-UTRA); Further advancements for E-UTRA physical layer aspects (Release 9), 3GPP, TS 36.814 V9.0.0, Mar. 2010.
    [26] L. Dong, G. Xu, and H. Ling, “Prediction of fast fading mobile radio channels in wideband communication systems,” in Proc. IEEE Global Telecommunications. Conf., vol. 6, pp. 3287-3291, Nov. 2001

    QR CODE
    :::