跳到主要內容

簡易檢索 / 詳目顯示

研究生: 尤伊揚
Andry Yuliyanto
論文名稱: 臺灣應用沸石於溫拌瀝青混凝土之成效評估
Evaluation of the Performance of Warm Mix Asphalt Concrete Using Zeolite in Taiwan
指導教授: 陳世晃
Chen Shih Huang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 97
中文關鍵詞: 沸石溫拌瀝青混凝土流變特性混合性能壓實性能
外文關鍵詞: Zeolite, Warm mix asphalt, rheological properties, mixing performance, Compactability
相關次數: 點閱:22下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 環境保護已成為交通運輸中日益重要的問題,尤其是瀝青製造產業。儘管熱拌瀝青混凝土 (HMA)仍然為廣泛應用,但目前溫拌瀝青混凝土 (WMA) 技術研究指出,採用沸石技術能夠有效的降低瀝青混合料的產製溫度。本研究目的為評估應用沸石的流變特性和成效試驗。應用沸石與瀝青 AC 20 混合後之質量損失率、發泡效果、黏度和動態剪切流變儀 (DSR) 進行評估; 另外,成效試驗評估應用之 WMA 和 HMA 皆由實驗室進行,包括壓實性能指數、抗水分敏感性和漢堡輪跡試驗 (HWTT)。實驗結果顯示應用沸石材料相較於採用一般的瀝青黏度與溫度方法,使用壓實性能指數作為決定WMA的拌和與壓實溫度較為適合。其中,Aspha-min 具有比其他沸石更好的壓實性能指數。然而,依據抗水分敏感性和 HWTT結果顯示,天然沸石優於其他沸石,其抗水分侵害殘餘指數 (TSR) 為91%,10,000 次的車轍深度為 7.03 mm。依據本研究對於經濟、能源和環境影響分析結果,沸石對於環境有效益的,沸石可用作一種有效且可持續的 WMA 添加劑。


    Environmental protection is an increasing and essential issue in pavement engineering, especially asphalt concrete manufacturing. Hot Mix Asphalt (HMA) is widely used worldwide. However, Warm Mix Asphalt (WMA) technology can decrease asphalt mixtures production and laying temperature. Zeolite is a material that can be a warm mix additive because it can provide a foaming effect to increase workability. This study evaluates zeolite as a warm mix additive in rheological properties, mixing performance, economic, energy, and environmental impacts. Four different types of zeolites, Aspha-min, Zp-4a, Type A, and Natural are used in this study. The optimized content of zeolite was determined by using a mass loss test, the foaming effect, viscosity, and Dynamic Shear Rheometer (DSR) were conducted to evaluate the physical properties of the asphalt binder. The results showed that using 5% of zeolite as an additive has better workability and viscosity. To understand the performances of WMA with zeolites, compactability indices, moisture sensitivity, and the Hamburg Wheel Tracking Test (HWTT) were also conducted. Experimental findings have shown that the compactability index can better determine mixing and compaction temperatures than viscosity tests for zeolite material as a WMA additive. The results showed that Aspha-min has better compactability indices than other zeolites, and Natural zeolite has lower moisture sensitivity and HWTT. With a Tensile Strength Ratio (TSR) of 91% and rut depth at 10,000 passes is 7.03 mm. Moreover, economic, energy, and environmental impact analyses have shown that zeolites are environmentally efficient. Reducing 15 °C and 30 °C can reduce energy consumption and GHG emission by 5.49% and 10.97%, respectively. This study found that zeolite may be used as an effective and sustainable WMA additive.

    Table of Contents Abstract 2 Table of Contents 4 List of Figures 7 List of Table 9 List of Abbreviations 10 List of Symbols 11 I. Introduction 1 1-1 Research Backgrounds 1 1-2 Research Objectives 2 1-3 Research Scopes 2 1-4 Study Flowchart 2 II. Literature Review 5 2-1 Warm Mix Asphalt 5 2-1-1 Organic Additives 5 2-1-2 Chemical Additives 6 2-1-3 Foaming Processes 6 2-2 Zeolite 6 2-2-1 Natural Zeolite 7 2-2-2 Synthetic Zeolite 7 2-3 Zeolite in WMA 8 2-3-1 Temperature Reduction with Viscosity Test 8 2-3-2 Temperature Reduction Without Viscosity Test 9 2-4 Mass Loss and Volume Increase 10 2-5 Moisture Sensitivity 11 2-6 Rutting Resistance 12 2-7 Compactability 15 2-8 Economic, Energy and Environmental Analysis 17 III. Methodology 20 3-1 Phase 1 for Asphalt Binder 20 3-1-1 Zeolite Characteristic 20 3-1-2 Asphalt Binder 22 3-2 Phase 2 for Asphalt Concrete 24 3-2-1 Material Properties 25 3-2-2 Coating 26 3-2-3 Compactability 27 3-2-4 Moisture Sensitivity 28 3-2-5 Rutting Test 28 3-2-6 Economic, Energy, and Environment Impact Analysis 29 IV. Result and Discussion 30 4-1 Phase 1 for Asphalt Binder 30 4-1-1 Zeolite Characteristic 30 4-1-2 Asphalt Binder 34 4-2 Phase 2 for Asphalt Concrete 40 4-2-1 Material Properties 40 4-2-2 Coating 43 4-2-3 Compactability 44 4-2-4 Moisture Sensitivity 48 4-2-5 Rutting Test 49 4-2-6 Economic, Energy and Environment Impact Analysis 52 4-3 Discussion 54 V. Conclusion and Recommendation 59 5-1 Conclusions 59 5-2 Recommendations 59 Reference 60 Appendix 68

    [1] M. Hassan, “Evaluation of the environmental and economic impacts of warm-mix asphalt using life-cycle assessment,” Int. J. Constr. Educ. Res., vol. 6, no. 3, pp. 238–250, 2010, doi: 10.1080/15578771.2010.507619.
    [2] G. Cheraghian et al., “Warm mix asphalt technology: An up to date review,” J. Clean. Prod., vol. 268, p. 122128, 2020, doi: 10.1016/j.jclepro.2020.122128.
    [3] A. Jamshidi and G. White, “The Challenges of Warm Mix Asphalt as a Mature Technology,” in Proceedings of the 9th International Conference on Maintenance and Rehabilitation of Pavements---Mairepav9, 2020, pp. 93–102.
    [4] A. Behnood, “A review of the warm mix asphalt (WMA) technologies: Effects on thermo-mechanical and rheological properties,” J. Clean. Prod., vol. 259, p. 120817, 2020, doi: 10.1016/j.jclepro.2020.120817.
    [5] P. Caputo et al., “The role of additives in warm mix asphalt technology: An insight into their mechanisms of improving an emerging technology,” Nanomaterials, vol. 10, no. 6, pp. 1–17, 2020, doi: 10.3390/nano10061202.
    [6] R. Vidal, E. Moliner, G. Martínez, and M. C. Rubio, “Life cycle assessment of hot mix asphalt and zeolite-based warm mix asphalt with reclaimed asphalt pavement,” Resour. Conserv. Recycl., vol. 74, pp. 101–114, 2013, doi: 10.1016/j.resconrec.2013.02.018.
    [7] S. Sargand, M. D. Nazzal, A. Al-Rawashdeh, and D. Powers, “Field Evaluation of Warm-Mix Asphalt Technologies,” J. Mater. Civ. Eng., vol. 24, no. 11, pp. 1343–1349, 2012, doi: 10.1061/(asce)mt.1943-5533.0000434.
    [8] G. Zou, J. Xu, and C. Wu, “Evaluation of factors that affect rutting resistance of asphalt mixes by orthogonal experiment design,” Int. J. Pavement Res. Technol., vol. 10, no. 3, pp. 282–288, 2017, doi: 10.1016/j.ijprt.2017.03.008.
    [9] E. Sanchez-Alonso, A. Vega-Zamanillo, M. A. Calzada-Perez, and D. Castro-Fresno, “Effect of warm additives on rutting and fatigue behaviour of asphalt mixtures,” Constr. Build. Mater., vol. 47, pp. 240–244, 2013, doi: 10.1016/j.conbuildmat.2013.05.083.
    [10] J. Cejka, H. Van Bekkum, A. Corma, and F. Schüth, “Studies in Surface Science and Catalysis 168: Introduction to Zeolite science and practice,” Studies in Surface Science and Catalysis, vol. 168. p. 455, 2007.
    [11] R. Vaiana, T. Iuele, V. Gallelli, and S. L. Tighe, “Warm mix asphalt by water-containing methodology: A laboratory study on workability properties versus micro-foaming time,” Can. J. Civ. Eng., vol. 41, no. 3, pp. 183–190, 2014, doi: 10.1139/cjce-2013-0080.
    [12] E. Sanchez-Alonso, A. Vega-Zamanillo, D. Castro-Fresno, and M. Delrio-Prat, “Evaluation of compactability and mechanical properties of bituminous mixes with warm additives,” Constr. Build. Mater., vol. 25, no. 5, pp. 2304–2311, 2011, doi: 10.1016/j.conbuildmat.2010.11.024.
    [13] B. Şengöz, A. Topal, and C. Gorkem, “Evaluation of moisture characteristics of warm mix asphalt involving natural zeolite,” Road Mater. Pavement Des., vol. 14, no. 4, pp. 933–945, 2013, doi: 10.1080/14680629.2013.817352.
    [14] B. Sengoz, A. Topal, and C. Gorkem, “Evaluation of natural zeolite as warm mix asphalt additive and its comparison with other warm mix additives,” Constr. Build. Mater., vol. 43, pp. 242–252, 2013, doi: 10.1016/j.conbuildmat.2013.02.026.
    [15] M. C. Rubio, G. Martínez, L. Baena, and F. Moreno, “Warm Mix Asphalt: An overview,” J. Clean. Prod., vol. 24, pp. 76–84, 2012, doi: 10.1016/j.jclepro.2011.11.053.
    [16] A. Almeida-Costa and A. Benta, “Economic and environmental impact study of warm mix asphalt compared to hot mix asphalt,” J. Clean. Prod., vol. 112, pp. 2308–2317, 2016, doi: 10.1016/j.jclepro.2015.10.077.
    [17] L. Shang, S. Wang, Y. Zhang, and Y. Zhang, “Pyrolyzed wax from recycled cross-linked polyethylene as warm mix asphalt (WMA) additive for SBS modified asphalt,” Constr. Build. Mater., vol. 25, no. 2, pp. 886–891, 2011, doi: 10.1016/j.conbuildmat.2010.06.097.
    [18] A. Kavussi and L. Hashemian, “Laboratory evaluation of moisture damage and rutting potential of WMA foam mixes,” Int. J. Pavement Eng., vol. 13, no. 5, pp. 415–423, 2012, doi: 10.1080/10298436.2011.597859.
    [19] A. Woszuk, M. Wróbel, and W. Franus, “Influence of waste engine oil addition on the properties of zeolite-foamed asphalt,” Materials (Basel)., vol. 12, no. 14, 2019, doi: 10.3390/ma12142265.
    [20] X. Zhao, “Porous materials for direct and indirect evaporative cooling in buildings,” Mater. Energy Effic. Therm. Comf. Build., pp. 399–426, 2010, doi: 10.1533/9781845699277.2.399.
    [21] M. Król, “Natural vs. synthetic Zeolites,” Crystals, vol. 10, no. 7. Multidisciplinary Digital Publishing Institute, p. 622, 2020.
    [22] S. Wang and Y. Peng, “Natural zeolites as effective adsorbents in water and wastewater treatment,” Chem. Eng. J., vol. 156, no. 1, pp. 11–24, 2010, doi: 10.1016/j.cej.2009.10.029.
    [23] P. Pal, “Nanotechnology in Water Treatment,” Ind. Water Treat. Process Technol., pp. 513–536, 2017, doi: 10.1016/b978-0-12-810391-3.00007-2.
    [24] A. Woszuk, A. Zofka, L. Bandura, and W. Franus, “Effect of zeolite properties on asphalt foaming,” Constr. Build. Mater., vol. 139, pp. 247–255, 2017, doi: 10.1016/j.conbuildmat.2017.02.054.
    [25] R. Bai, Y. Song, Y. Li, and J. Yu, “Creating Hierarchical Pores in Zeolite Catalysts,” Trends Chem., vol. 1, no. 6, pp. 601–611, 2019, doi: 10.1016/j.trechm.2019.05.010.
    [26] A. Woszuk and W. Franus, “Properties of the Warm Mix Asphalt involving clinoptilolite and Na-P1 zeolite additives,” Constr. Build. Mater., vol. 114, pp. 556–563, 2016, doi: 10.1016/j.conbuildmat.2016.03.188.
    [27] W. Franus, M. Wdowin, and M. Franus, “Synthesis and characterization of zeolites prepared from industrial fly ash,” Environ. Monit. Assess., vol. 186, no. 9, pp. 5721–5729, 2014, doi: 10.1007/s10661-014-3815-5.
    [28] M. Franus, M. Wdowin, L. Bandura, and W. Franus, “Removal of environmental pollutions using zeolites from fly ash: A review,” Fresenius Environ. Bull., vol. 24, no. 3A, pp. 854–866, 2015.
    [29] B. Kheradmand, R. Muniandy, L. T. Hua, R. B. Yunus, and A. Solouki, “An overview of the emerging warm mix asphalt technology,” Int. J. Pavement Eng., vol. 15, no. 1, pp. 79–94, 2014, doi: 10.1080/10298436.2013.839791.
    [30] R. Bonaquist, Transportation Research Board, and National Cooperative Highway Research Program. NCHRP Report 691: Mix Design Practices for Warm-Mix Asphalt, 2011.
    [31] Y. Zhang, Z. Leng, F. Zou, L. Wang, S. S. Chen, and D. C. W. Tsang, “Synthesis of zeolite A using sewage sludge ash for application in warm mix asphalt,” J. Clean. Prod., vol. 172, pp. 686–695, 2018, doi: 10.1016/j.jclepro.2017.10.005.
    [32] J. De Visscher, F. Vervaecke, A. Vanelstraete, H. Soenen, T. Tanghe, and P. Redelius, “Asphalt production at reduced temperatures using zeolites and the impact on asphalt performance,” Road Mater. Pavement Des., vol. 11, no. 1, pp. 65–81, 2010, doi: 10.1080/14680629.2010.9690260.
    [33] A. J. Hanz, A. Faheem, E. Mahmoud, and H. U. Bahia, “Measuring effects of warm-mix additives: Use of newly developed asphalt binder lubricity test for the dynamic shear rheometer,” Transp. Res. Rec., no. 2180, pp. 85–92, 2010, doi: 10.3141/2180-10.
    [34] H. M. Yin and B. Lai, “Visco-elastic characterisation of zeolite modified asphalt binder considering phase transformation and air void interaction,” Road Mater. Pavement Des., vol. 13, no. 2, pp. 279–299, 2012, doi: 10.1080/14680629.2012.668837.
    [35] S. Xu, F. Xiao, S. Amirkhanian, and D. Singh, “Moisture characteristics of mixtures with warm mix asphalt technologies – A review,” Constr. Build. Mater., vol. 142, pp. 148–161, 2017, doi: 10.1016/j.conbuildmat.2017.03.069.
    [36] A. I. Al-Hadidy and S. A. Khalid, “Influence of Long-Term Aging on the Engineering Properties of WMA Mixtures Containing Petroleum Wax and Natural Zeolite,” Int. J. Pavement Res. Technol., no. 0123456789, 2021, doi: 10.1007/s42947-021-00047-9.
    [37] M. Arabani, Z. Ranjbar Pirbasti, and G. H. Hamedi, “Investigating the impact of zeolite on reducing the effects of changes in runoff acidity and the moisture sensitivity of asphalt mixtures,” Constr. Build. Mater., vol. 268, no. 2021, p. 121071, 2021, doi: 10.1016/j.conbuildmat.2020.121071.
    [38] G. Valdes-Vidal, A. Calabi-Floody, and E. Sanchez-Alonso, “Performance evaluation of warm mix asphalt involving natural zeolite and reclaimed asphalt pavement (RAP) for sustainable pavement construction,” Constr. Build. Mater., vol. 174, pp. 576–585, 2018, doi: 10.1016/j.conbuildmat.2018.04.149.
    [39] S. Tassiri, K. Kanitpong, and A. Sawangsuriya, “Effects of Additives on the Performance Properties of Warm Mix Asphalt with Reclaimed Asphalt Pavement,” Int. J. Pavement Res. Technol., no. 0123456789, 2021, doi: 10.1007/s42947-021-00085-3.
    [40] H. H. Mohammed and A. N. Mustafa, “Evaluation of Warm Mix Asphalt Performance Involving Synthetic Zeolite,” IOP Conf. Ser. Mater. Sci. Eng., vol. 737, no. 1, 2020, doi: 10.1088/1757-899X/737/1/012125.
    [41] R. Guo, T. Nian, and F. zhou, “Analysis of factors that influence anti-rutting performance of asphalt pavement,” Constr. Build. Mater., vol. 254, p. 119237, 2020, doi: 10.1016/j.conbuildmat.2020.119237.
    [42] Y. Du, J. Chen, Z. Han, and W. Liu, “A review on solutions for improving rutting resistance of asphalt pavement and test methods,” Constr. Build. Mater., vol. 168, pp. 893–905, 2018, doi: 10.1016/j.conbuildmat.2018.02.151.
    [43] B. de C. Amoni, A. D. L. de Freitas, A. R. Loiola, J. B. Soares, and S. de A. Soares, “A method for NaA zeolite synthesis from coal fly ash and its application in warm mix asphalt,” Road Mater. Pavement Des., vol. 20, no. sup2, pp. S558–S567, 2019, doi: 10.1080/14680629.2019.1633766.
    [44] Z. Hossain, M. Zaman, E. A. O’Rear, and D. H. Chen, “Effectiveness of water-bearing and anti-stripping additives in warm mix asphalt technology,” Int. J. Pavement Eng., vol. 13, no. 5, pp. 424–432, 2012, doi: 10.1080/10298436.2011.616588.
    [45] T. Gandhi, C. Akisetty, and S. Amirkhanian, “Laboratory evaluation of warm asphalt binder aging characteristics,” Int. J. Pavement Eng., vol. 10, no. 5, pp. 353–359, 2009, doi: 10.1080/10298430802342724.
    [46] V. Hosahally Nanjegowda, R. Patel, J. Mahimaluru, and K. Prapoorna Biligiri, “Synthesis and characterization of zeolite-like additive: An eco-efficient asphalt mix production strategy,” Constr. Build. Mater., vol. 266, p. 120898, 2021, doi: 10.1016/j.conbuildmat.2020.120898.
    [47] X. Han et al., “Effect of silane coupling agent modified zeolite warm mix additives on properties of asphalt,” Constr. Build. Mater., vol. 259, p. 119713, 2020, doi: 10.1016/j.conbuildmat.2020.119713.
    [48] M. A. Ishaq, L. Venturini, and F. Giustozzi, “Correlation Between Rheological Rutting Tests on Bitumen and Asphalt Mix Flow Number,” Int. J. Pavement Res. Technol., no. 0123456789, 2021, doi: 10.1007/s42947-021-00089-z.
    [49] A. V. Kataware and D. Singh, “Evaluating effectiveness of WMA additives for SBS modified binder based on viscosity, Superpave PG, rutting and fatigue performance,” Constr. Build. Mater., vol. 146, pp. 436–444, 2017, doi: 10.1016/j.conbuildmat.2017.04.043.
    [50] A. Topal, J. Oner, B. Sengoz, P. A. Dokandari, and D. Kaya, “Evaluation of Rutting Performance of Warm Mix Asphalt,” Int. J. Civ. Eng., vol. 15, no. 4, pp. 705–714, 2017, doi: 10.1007/s40999-017-0188-5.
    [51] G. Valdés-Vidal, A. Calabi-Floody, E. Sanchez-Alonso, C. Díaz, and C. Fonseca, “Highway trial sections: Performance evaluation of warm mix asphalt and recycled warm mix asphalt,” Constr. Build. Mater., vol. 262, 2020, doi: 10.1016/j.conbuildmat.2020.120069.
    [52] H. U. Bahia, T. P. Friemel, P. A. Peterson, J. S. Russell, and B. Poehnelt, “Optimization of constructibility and resistance to traffic: a new design approach for HMA using the superpave compactor,” J. Assoc. Asph. Paving Technol., vol. 67, 1998.
    [53] A. F. F. Mahmoud and H. Bahia, “Using gyratory compactor to measure mechanical stability of asphalt mixtures,” Wisconsin Highway Research Program, 2004.
    [54] S. Dessouky, A. Pothuganti, L. F. Walubita, and D. Rand, “Laboratory Evaluation of the Workability and Compactability of Asphaltic Materials prior to Road Construction,” J. Mater. Civ. Eng., vol. 25, no. 6, pp. 810–818, 2013, doi: 10.1061/(asce)mt.1943-5533.0000551.
    [55] AASHTO R35-17, “Standard Practice for Superpave Volumetric Design for Asphalt Mixtures,” vol. 14, no. 2018, pp. 1–27, 2019.
    [56] A. Romier, M. Audeen, J. David, Y. Martineau, and F. Olard, “Low-energy asphalt with performance of hot-mix asphalt,” Transp. Res. Rec., no. 1962, pp. 101–112, 2006, doi: 10.3141/1962-12.
    [57] Department of Trade and Industry of the United Kingdom, “Digest of United Kingdom energy statistics 2006.” The Stationery Office London, 2006.
    [58] F. and R. A. of the U. K. Department for Environment, “UK government GHG conversion factors for company reporting,” London, UK DECC, DEFRA, 2016.
    [59] J. Zhang, L. F. Walubita, A. N. M. Faruk, P. Karki, and G. S. Simate, “Use of the MSCR test to characterize the asphalt binder properties relative to HMA rutting performance - A laboratory study,” Constr. Build. Mater., vol. 94, pp. 218–227, 2015, doi: 10.1016/j.conbuildmat.2015.06.044.
    [60] I. Syed, M. A. Hasan, and R. A. Tarefder, “Investigation of rutting performance of different warm mix asphalt (WMA) Mixtures,” Int. J. GEOMATE, vol. 14, no. 45, pp. 116–123, 2018, doi: 10.21660/2018.45.7328.
    [61] B. Lai, C. Barros, and H. Yin, “Investigation of rheological behavior of asphalt binder modified by the Advera® additive,” Poromechanics IV - 4th Biot Conf. Poromechanics, no. December, pp. 487–492, 2009.
    [62] A. Woszuk, “Application of fly ash derived zeolites in warm-mix asphalt technology,” Materials (Basel)., vol. 11, no. 9, 2018, doi: 10.3390/ma11091542.
    [63] X. Han et al., “Preparation and properties of silane coupling agent modified zeolite as warm mix additive,” Constr. Build. Mater., vol. 244, p. 118408, 2020, doi: 10.1016/j.conbuildmat.2020.118408.
    [64] ASTM D 4402, “Standard Test Method for Viscosity Determination Using a Rotational Viscometer,” Annu. B. ASTM Stand., vol. 87, no. Reapproved, pp. 1–5, 2000, doi: 10.1520/D4402.
    [65] ASTM D7175-15, “Determining the Low-Temperature Rheological Properties of Asphalt Binder Using a Dynamic Shear Rheometer (DSR),” pp. 1–62, 2015, doi: 10.1520/D7175-15.Copyright.
    [66] ASTM D373-21a, “Standard Specification for Performance-Graded Asphalt Binder,” 2021, doi: 10.1520/D6373-21A.2.
    [67] ASTM C136-19, “Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates,” ASTM Int. West Conshohocken, PA, 2019, doi: 10.1520/C0136.
    [68] ASTM C128-15, “Standard Test Method for Relative Density (Specific Gravity) and Absorption of Coarse Aggregate,” Annu. B. ASTM Stand., vol. i, pp. 1–5, 2015, doi: 10.1520/C0128-15.2.
    [69] ASTM C127, “Standard Test Method for Density, Relative Density (Specific Gravity), and Absorption of Coarse Aggregate,” Annu. B. ASTM Stand., pp. 1–5, 2004, doi: 10.1520/C0127-15.2.
    [70] ASTM D2489M-16, “Standard Test Method for Estimating Degree of Particle Coating of Asphalt Mixtures,” pp. 7–8, doi: 10.1520/D2489.
    [71] ASTM D6931-17, “Standard Test Method for Indirect Tensile (IDT) Strength of Bituminous Mixtures,” pp. 3–7, 2011, doi: 10.1520/D6931-17.2.
    [72] AASHTO T324, “Standard method of test for Hamburg wheel-track testing of compacted asphalt mixtures,” pp. 1–12, 2019.
    [73] F. Zou, Z. Leng, R. Cao, G. Li, Y. Zhang, and A. Sreeram, “Performance of zeolite synthesized from sewage sludge ash as a warm mix asphalt additive,” Resour. Conserv. Recycl., vol. 181, no. November 2021, p. 106254, 2022, doi: 10.1016/j.resconrec.2022.106254.
    [74] MS-2, “Asphalt mix design methods,” Man. Ser. Asph. Inst., 2014.
    [75] Illinois Department of Transportation, “Standard Specifications for Road and Bridge Construction,” 2016.
    [76] Texas Department of Transportation, “Standard Specifications for Construction and Maintenance of Highways, Streets, and Bridges,” no. December, 2014.

    QR CODE
    :::