| 研究生: |
簡至良 Zhi-Liang Chien |
|---|---|
| 論文名稱: |
半自動標記系統來提升OWL為基的語意搜尋 Semi-automatic Annotation System to Enhance OWL-based Semantic Search |
| 指導教授: |
陳振炎
Jen-Yen CHEN |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 軟體工程研究所 Graduate Institute of Software Engineering |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 47 |
| 中文關鍵詞: | 半自動標記系統 、語意搜尋 、網路知識本體語言(OWL) |
| 外文關鍵詞: | semantic search, semi-automatic annotation system, web ontology language (OWL) |
| 相關次數: | 點閱:20 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
目前Google、Yahoo使用key word搜尋,常找到大量不合用資訊。解決之道是:對textual web data全文標記語意,使用語意搜尋。但,純手動annotation太耗時;而且,如annotation的abstraction level過低,則高abstraction的隱喻搜尋不到。本文提出semi-automatic annotation system,即Automatic Annotator及Manual Annotator,先用Protégé定義好web ontology language (OWL) terms,前者用Knuth-Morris-Pratt (KMP) 演算法全文比對terms來annotate;後者讓使用者用這些terms來annotate高abstraction的隱喻。Annotate後產生的semantically-enhanced textual web document可由其他網路服務來做semantic處理,如範例中的 information retrieval system與recommendation system。
Current keyword search by Google, Yahoo, and so on gives enormous unsuitable results. A solution to this perhaps is to annotate semantics to textual web data to enable semantic search, rather than keyword search. However, pure manual annotation is very time-consuming. Further, searching high level concept such as metaphor cannot be done if the annotation is done at a low abstraction level. We present a semi-automatic annotation system, i.e. automatic annotator and a manual annotator. Against the web ontology language (OWL) terms defined by Protégé, the former annotates the textual web data using the Knuth-Morris-Pratt (KMP) algorithm, while the latter allows a user to use the terms to annotate metaphors with high abstraction. The resulting semantically-enhanced textual web document can be semantically processed by other web services such as the information retrieval system and the recommendation system shown in our example.
[1] Stanford University. [Online]. Available: http://protege.stanford.edu/
[2] World Wide Web Consortium. OWL Web Ontology Language Overview.
[Online]. Available: http://www.w3.org/TR/owl-features/
[3] Wikipedia. Information Retrieval. [Online]. Available: http://tinyurl.com/3w5qs2
[4] Wikipedia. KMP Algorithm. [Online]. Available: http://tinyurl.com/34wneo
[5] Samhaa R, Maryam H., and Ahmed R.. Ontology Based Annotation of Text
Segments. March 2007 SAC ''07: Proceedings of the 2007 ACM symposium on
Applied computing.
[6] Blythe J. and Gil Y. Incremental Formalization of Document Annotations through
Ontology-Based Paraphrasing. In Proceedings of the 13th International World
Wide Web Conference ( New York, New York, May 2004), pp. 455-461.
[7] National Digital Archives Program, Taiwan. [Online]. Available: http://tinyurl.com/3ocjjj, http://cls.hs.yzu.edu.tw/tang/Database/index.html
[8] Reeve L. and Han H. Survey of Semantic Annotation Platforms, In Proceedings of SAC’05 (Santa Fe, New Mexico, USA, March 2005).
[9] Sesame repository. [Online]. Available: http://www.openrdf.org/
[10] OWLIM Semantic Repository. [Online]. Available: http://ontotext.com/owlim/