跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳依璟
I-Ching Chen
論文名稱: 自走車之路徑規劃與位置追蹤
Path Planning and Position Tracking of Mobile Robot
指導教授: 鍾鴻源
Hung-Yuan Chung
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
畢業學年度: 100
語文別: 中文
論文頁數: 66
中文關鍵詞: 蒙地卡羅定位法D* Lite演算法路徑規劃位置追蹤
外文關鍵詞: D* Lite algorithm, position tracking, path planning, Monte Carlo Localization algorithm
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   為了使自走車在環境中能確實有效率地達成任務,自走車要能知道自己在環境中的位置,並以最快的速度到達指定地點,執行指定動作。本文研究中使用人工智慧的D* Lite搜尋演算法,為自走車規劃一條從起始點到終點的最短路徑,供自走車在最短的時間內到達目的地。另外為了使自走車能正確的沿著這條規劃的路徑行走,使用以機率統計為基礎的蒙地卡羅定位演算法,來做位置估測與追蹤,這樣自走車行走起來不至於偏離原本規劃路徑太多。
      D* Lite演算法將實驗環境切割成許多小方格,以廣度優先搜尋法為基礎,加入啟發函數使搜尋方向朝向目標點,以及重覆利用過去的計算資訊來加快計算速度,規劃出一條最短路徑供自走車行走,並能在遇到障礙物時快速地重新規劃一條新路徑。
      蒙地卡羅定位演算法先由輪子上的編碼器以里程計方法推算出自走車位置,再加入雷射測距儀量測的環境資訊來修正這個位置,使得最後計算出來的結果較符合自走車的實際位置,完成對里程計方法推算出來的誤差補償。
      最後本論文將這些方法實際應用在自走車上,並以數據統計表示,確實為自走車算出最短路徑供行走,及補償里程計方法在自走車長距離行走中的誤差,完成對自走車的路徑規劃與位置估測追蹤。


      To accomplish the assigned task efficiently and correctly, a mobile robot should know where it is, reach the goal position as fast as it could and perform the assigned motion. This work uses the D* Lite search algorithm of Artificial Intelligent to plan a shortest path to ensure the mobile robot can reach goal quickly. Besides, to move along the path planned correctly, we use Monte Carlo localization algorithm of Probability and Statistics to realize the position estimation and tracking for the mobile robot.
      D* Lite search algorithm adds a heuristic function to make search direction orient to the goal, and reuses the past information to plan a shortest path quickly. It can replan a new path when encountering obstacles.
      Monte Carlo localization algorithm is used to calculate the position of the mobile robot. It can compute the final location closed to the actual position, which compensates the odometer errors and integrates the measurement data from laser range finder to correct the position..
      In the experiment, two algorithms are applied on the mobile robot. We can plan a shortest path for the mobile robot to move, compensate the error when the mobile robot moves a long distance, and accomplish the path planning and position tracking for the mobile robot.

    中文摘要 i 英文摘要 ii 誌謝 iii 目錄 iv 圖目錄 vi 表目錄 ix 第一章  緒論 1 1-1  簡介 1 1-2  研究背景 2 1-3  文獻探討 4 1-4  論文架構 7 第二章  硬體與系統模型 8 2-1  位置控制器 9 2-2  雷射測距儀 9 2-3  運動系統 11 2-4  里程計模型 14 2-5  感測器模型 15 第三章  路徑規劃方法 18 3-1  Dijkstra’s演算法 19 3-2  A* 搜尋演算法 20 3-3  LPA* 演算法 22 3-4  D* Lite演算法 25 第四章  定位方法 29 4-1  貝氏定理 30 4-2  馬可夫假設 31 4-3  貝氏濾波器 31 4-3-1 名詞解釋 31 4-3-2 數學推導 33 4-4  粒子濾波器 35 4-4-1 名詞解釋 35 4-4-2 數學推導 35 4-5  蒙地卡羅方法 38 4-6  蒙地卡羅定位方法 38 第五章  實驗結果與討論 41 5-1  路徑規劃實驗 42 5-2  定位實驗 47 第六章  結論與未來展望 59 參考文獻           62

    〔1〕張峻華、楊劭文、王傑智,「行動型機器人的環境知」,智慧型機器人產業情報報告,第34期,10-21頁
    〔2〕Songmin Jia, Hao Yang, Xiuzhi Li and Wei Fu,“LRF-based data processing algorithm for map building of mobile robot”, IEEE International Conference on Information and Automation, pp. 1924- 1929, June 2010.
    〔3〕許煥坤,「攝影機使用於行動型機器人之定位概論」,慧型機器人產業情報報告,第46期,2010年。
    〔4〕S. Koenig, M. Likhachev and D. Fury, “Lifelong planning A* ”, Artifical Intelligence Journal, vol. 155, pp. 93-146, 2004.
    〔5〕Sven Koenig and Maxim Likhachev, “Fast replanning for navigation in unknown terrain”, IEEE Transactions on Robotics, vol. 21, pp.354-363, June 2005.
    〔6〕Soh Chin Yun, V. Ganapathy and Tee Wee Chien, “Enhanced D* Lite Algorithm for mobile robot navigation”, IEEE Symposium on Industrial Electronics & Applications, pp.545-550, October 2010.
    〔7〕J. Garimort and A. Hornung, “Humanoid navigation with dynamic footstep plans”, IEEE International Conference on Robotics and Automation, pp. 3982-3987, May 2011.
    〔8〕A. Stentz, “The focussed D* algorithm for real-time replanning”, Proceedings of the International Joint Conference on Artifical Intelligence, pp. 1652-1659, 1995.
    〔9〕楊劭文、王傑智,「行動型機器人定位的挑戰」,智慧型機器人產業情報報告,第32期,10-27頁。
    〔10〕Johann Borenstein and Liqiang Feng, “Measurement and correction of systematic odometry errors in mobile robots”, IEEE Transactions on Robotics and Automation, vol 12, pp. 869-880, December. 1996.
    〔11〕A. Martinelli, “Evaluating the odometry error of a mobile robot”, IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 1, pp. 853-858, 2002.
    〔12〕Clark F. Olson, “Probabilistic self-localization for mobile robots”, IEEE Transactions on Robotics and Automation, vol 16, pp. 55-66, February 2000.
    〔13〕Xu Zezhong, Chen Huahua, Xiang Zhiyu and Liu Jilin, “Position Estimation for a Mobile Robot with Augmented System State”, IEEE International Conference on Neural Networks and Brain, pp. 366-370, October 2005.
    〔14〕E.Ivanjko and I.Petrovic, “Extended Kalman filter based mobile robot pose tracking using occupancy grid maps”, Proceedings of the 12th IEEE Mediterranean Electrotechnical Conference, Vol. 1, pp. 311-314, May 2004.
    〔15〕K.O.Arras, J.A.Castellanos and R.Siegwart, “Feature-based multi-hypothesis localization and tracking for mobile robots using geometric constraints”, IEEE International Conference on Robotics and Automation, vol. 2, pp. 1371-1377, 2002.
    〔16〕A.R.Cassandra, L.P.Kaelbling, J.A.Kurien, “Acting under uncertainty: discrete Bayesian models for mobile-robot navigation”, Proceedings of the 1996 IEEE/RSJ International Conference on Intelligent Robots and Systems, vol.2, pp. 963-972, November 1996.
    〔17〕D.Fox, W.Burgard, and S.Thrun, “Markov localization for mobile robots in dynamic environments”, Journal of Artificial Intelligence Research, vol. 11, pp. 391-427, 1999.
    〔18〕F. Dellaert, D. Fox, W. Burgard and S. Thrun, “Monte Carlo localization for mobile robots”, IEEE International Conference on Robotics and Automation, vol. 2, pp. 1322-1328, May 1999.
    〔19〕Sebastian Thrun, Dieter Fox, Wolfram Burgard and Frank Dallaert, “Robust Monte Carlo Localization for Mobile Robots” Artificial Intelligence, vol. 128, pp 99-141, May 2001.
    〔20〕Dieter Fox, Wolfram Burgard, Frank Dellaert, and Sebastian Thrun, “Monte Carlo Localization : Efficient Position Estimation for Mobile Robots”, Proceedings of the Sixteenth National Conference on Artificial Intelligence, July 1999.
    〔21〕方正、佟國峰和徐心和,「基於貝葉斯濾波理論的自主機器人自定位方法研究」,控制與決策,第21卷第8期,841-847頁,2006年8月。
    〔22〕Eryong Wu, Zhiyu Xiang and Jilin Liu, “An Efficient Monte Carlo Method for Mobile Robot Localization”, IEEE International Conference on Mechatronics and Automation, pp. 877-881, June 2006.
    〔23〕Guanghui Cen, H. Nakamoto, N. Matsuhira and I. Hagiwara, “Effective application of Monte Carlo localization for service robot”, IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1914-1919, October 2007.
    〔24〕Guanghui Cen, N. Matsuhira, J. Hirokawa, H. Ogawa and I. Hagiwara, “Mobile robot global localization using particle filters”, International Conference on Control, Automation and Systems, pp. 710-713, October 2008.
    〔25〕Guanghui Cen, N. Matsuhira, J. Hirokawa, H. Ogawa and I. Hagiwara, “Service robot localization using improved Particle filter”, IEEE International Conference on Automation and Logistics, pp. 2454-2459, September 2008.
    〔26〕W. Adiprawita, A.S. Ahmad, J. Sembiring and B.R. Trilaksono, “New resampling algorithm for particle filter localization for mobile robot with 3 ultrasonic sonar sensor”, International Conference on Electrical Engineering and Informatics, pp. 1-6, July 2011.
    〔27〕Wei Hong, Changjiu Zhou and Yantao Tian, “Robust Monte Carlo Localization for humanoid soccer robot”, IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pp. 934-939, July 2009.
    〔28〕Wei Hong, Yantao Tian and Changjiu Zhou, “The piecewise monte carlo localization system for a humanoid soccer robot”, IEEE International Conference on Automation and Logistics, pp. 1905-1910, August 2009.
    〔29〕M. Bennewitz, C. Stachniss, S. Behnke and W. Burgard, “Utilizing reflection properties of surfaces to improve mobile robot localization”, IEEE International Conference on Robotics and Automation, pp. 4287-4292, May 2009.
    〔30〕S. Olufs and M. Vincze, “An efficient area-based observation model for monte-carlo robot Localization”, IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 13-20, October 2009.
    〔31〕S. Yilmaz, H.E. Kayir, B. Kaleci and O. Parlaktuna, “A new sensor model for particle-filter based localization in the partially unknown environments”, IEEE International Conference on Systems Man and Cybernetics, pp. 428-434, October 2010.
    〔32〕Parallax Inc, Motor Mount and Wheel Kit (#27971) with Position Controller (#29319)
    〔33〕Hokuyo Automatic co Ltd, URG-Series Communication Protocol Specification (SCIP Version2.0)
    〔34〕Z. Fan, Y. Koren and D. Wehe, “Tracked mobile robot control: hybrid approach,” Control Engineering Practice, Vol.3, No.3, pp.329-336, 1995.
    〔35〕S. Thrun , W. Burgard and D. Fox, “Probabilistic Robotics”, MIT Press, Cambridge, MA, 2005.
    〔36〕張一珂、劉鴻劍和朱志斌,「基於車輛導航的一種改良動態最短路徑算法」,科技廣場,第五期,26-28頁,2009年。
    〔37〕Patrick Lester, “A* Pathfinding for Beginners”, http://www.policyalmanac.org/game/aStarTutorial.html, May 2009.
    〔38〕Andrew Davison, “Robotics Course Lecture”, http://www.doc.ic.ac.uk/~ajd/Robotics/index.html, London Imperial College, 2012.
    〔39〕林子揚,「雷射測距儀應用於輪型機器人自動導航」,國立中央大學,碩士論文,民國99年。
    〔40〕李孟軒,「輪型機器人之路徑追蹤與避障」,國立中央大學,碩士論文,民國100年。
    〔41〕劉詩群,「粒子最佳化與模糊控制於輪型機器人之自動導航應用」,國立中央大學,碩士論文,民國100年。
    〔42〕鍾鎮謙,「運用雷射測距儀之機器人定位設計」,國立交通大學,碩士論文,民國95年。
    〔43〕李浩銘,「基於全方向視覺系統Monte Carlo定位的研究」,國立高雄第一科技大學,碩士論文,民國96年

    QR CODE
    :::