跳到主要內容

簡易檢索 / 詳目顯示

研究生: 劉時閔
Shih-Min Liu
論文名稱: 電漿高分子聚合膜對二氧化碳及甲烷氣體之分離性研究
Studies of Plasma-polymerized Membranes for the Separation of Carbon Dioxide and Methane
指導教授: 陳暉
Hui Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程與材料工程學系
Department of Chemical & Materials Engineering
畢業學年度: 88
語文別: 中文
論文頁數: 77
中文關鍵詞: 胺基基團二異丙胺選擇性電漿聚合
外文關鍵詞: diisopropylamine, selectivity, plasma polymerization, amino group
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文主要針對二氧化碳與甲烷氣體之分離進行實驗研究,為了達成分離二氧化碳與甲烷之目的,利用電漿聚合法來製備高分子分離膜。此分離膜之上層為電漿高分子膜,下層基材係由矽化物皮層、多孔性聚亞醯胺及聚酯不織布支撐層所組成之多層複合膜。研究中分離膜除採用二乙胺、三乙胺及二異丙胺分別作為電漿聚合之單體外,另導入氨氣體進行電漿處理,主要藉由二氧化碳與胺基間之相互作用,使得薄膜對二氧化碳有較佳之選擇性,進而提升二氧化碳與甲烷之分離效果。本研究以二異丙胺單體行電漿披覆時可使選擇性提升14.7倍(α=33.8);而以氨氣體進行電漿處理時,可使選擇性提升5倍(α=12),且仍維持其高滲透量(79.6GPU)。實驗結果亦顯示電漿處理過程中,電漿聚合與電漿蝕刻是同時存在而且相互競爭,並且發現隨電漿功率提升,滲透量會因電漿披覆厚度增加而下降,且其選擇性呈漸增趨勢,但在高功率下,由於蝕刻效應之影響致使分離膜產生裂痕,導致滲透量劇增選擇性則劇減。
    藉由FTIR-ATR與ESCA分析二異丙胺電漿披覆膜表層之官能基及元素組成得知,胺基吸收之相對強度及氮/碳(N/C)之比值越高者,選擇性則越高,此乃由於胺基基團與二氧化碳間之相互作用,使得二氧化碳與甲烷之分離效果得以提升。


    The separation of carbon dioxide and methane has been carried out by means of plasma-treated membranes in this work. The membrane used for separation comprised a plasma-treated polymeric layer on a composite substrate which is composed of a silicone skin layer and a supporting layer of porous polyimide and nonwoven polyester fabric. The monomers used for the plasma polymerization were selected due to their interaction between carbon dioxide and amino groups, including diethylamine, triethylamine and diisopropylamine in addition to gaseous ammonia, respectively. Among them, it increases selectivity up to 14.7 times (α=33.8) that was obtained by using diisopropylamine as the monomer for preparation of plasma-deposited membrane. However, an enhanced selectivity with 5 times (α=12) as high as that of the composite substrate could be obtained without a big loss of its gas permeation flux (R=79.6GPU) as a gaseous ammonia was used for the preparation of plasma-treated membrane. The results also showed that the plasma polymerization and plasma etching would take place simultaneously with mutual competition during plasma treatment. Furthermore, increasing the power input of plasma would firstly lead to decrease the gas permeation flux due to higher degree of plasma deposition and follow by increasing gas permeation flux dramatically attributed to etching effect. Therefore, the selectivity would increase firstly and level off as a result.
    From the analysis results of FTIR-ATR and ESCA on diisopropylamine plasma-deposited membrane, we found that the higher the intensity of amino group absorption and Nitrogen-to-Carbon (N/C) ratio, the higher selectivity the diisopropylamine plasma-deposited membrane was. Consequently, an enhancement on the selectivity for the separation of carbon dioxide and methane might result from the interaction between amino group and carbon dioxide

    目錄 中文摘要‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥I 英文摘要‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥Ⅱ 表目錄‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥Ⅳ 圖目錄‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥Ⅴ 第一章 緒論‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥1 1-1前言‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥1 1-2文獻回顧‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥2 1-2-1高選擇性CO2分離膜‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥2 1-2-2高滲透性CO2分離膜‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥3 1-2-3 CH4分離膜‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥4 1-2-4高分子薄膜改質之方法‥‥‥‥‥‥‥‥‥‥‥‥‥‥5 1-3基材介紹‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥9 1-4電漿原理‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥11 1-4-1電漿‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥11 1-4-2電漿處理‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥14 1- 5研究目的‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥18 第二章 實驗‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥19 2-1實驗藥品‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥19 2-2實驗儀器‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥20 2-3實驗步驟‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥23 2-3-1電漿處理‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥23 2-3-2氣體滲透分析‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥24 2-3-3表面接觸角測試‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥25 2-3-4霍氏轉換紅外線光譜分析‥‥‥‥‥‥‥‥‥‥‥‥‥25 2-3-5掃描式電子顯微鏡分析‥‥‥‥‥‥‥‥‥‥‥‥‥‥25 2-3-6表面元素分析(ESCA)‥‥‥‥‥‥‥‥‥‥‥‥‥‥25 2-4實驗流程‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥25 第三章 結果與討論‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥27 3-1單體的選擇‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥28 3-2電漿聚合條件對二異丙胺電漿披覆膜氣體滲透量與選擇性之影響 ‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥31 3-2-1電漿處理時間‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥31 3-2-2系統壓力‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥31 3-2-3單體流速‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥35 3-3 氣體分離條件對二異丙胺電漿披覆膜氣體滲透量與選擇性之影 響‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥38 3-3-1進料壓力‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥38 3-3-2進料溫度‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥41 3-4電漿披覆時間對電漿披覆層性質之影響‥‥‥‥‥‥‥‥‥ 46 3-5電漿披覆膜之穩定性測試‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥48 3-6氨氣體電漿處理之複合膜對氣體滲透量與選擇性之影響‥‥‥50 3-7薄膜結構分析‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥53 3-7-1薄膜表面元素分析‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥53 3-7-2 FTIR-ATR光譜分析‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥55 第四章 結論‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥60 參考文獻‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥61

    1. M. Mulder, Basic principle of membrane technology, Kluwer Academic Publisher, London, (1991).
    2. S. Loeb and S. Sourirajan, Advan. Chem. Ser., 38, 117(1970).
    3. P. K. Gantzel and U. Merten, Ind. Eng. Chem. Process Des. Der., 19(2), 331(1970).
    4. B. J. Story and W. J. Koros, J. Membrane Sci., 67, 191(1992).
    5. O. M. Ekiner and G. Vassilatos, J. Membrane Sci., 53, 259(1990).
    6. S. H. Chen, M. H. Lee, and J. Y. Lai, Eur. Polym. J., 32, 1403(1996).
    7. D. M. Wang, F. C. Lin, T. T. Wu, and J. Y. Lai, J. Membrane Sci., 123, 35(1997).
    8. K. R. Lee, M. Y. Teng, H. H. Lee, and J. Y. Lai, J. Membrane Sci., 164, 13(2000).
    9. J. Hao, K. Okamato, J. Membrane Sci., 132, 97(1997).
    10. P. van de Witte, H. Esselbrugge, A. M. P. Peters, P. J. Dijkstra, J. Feijen, R. J. J. Groenewegen, J. Smid, J. Olijslager, J. M. Schakenraad, M. J. D. Eenink, and A. P. Sam, J. Control. Release., 24, 61(1993).
    11. R. Rautenbach, R. Albrecht, Membrane process, John Wily & Sons Ltd., New York, (1989).
    12. M. Mulder, Basic principle of membrane technology, Kluwer Academic Publisher, London, (1991).
    13. K. Okamoto, M. Fujii, S. Okamyo, H. Suzuki, K. Tanaka, H. Kita, Macromolecules, 28, 6950(1995).
    14. H. Kawakami, M. Mikawa, and S. Nagaoka, J. Appl. Polym. Sci., 62, 965(1996).
    15. H. Kawakami, M. Mikawa, and S. Nagaoka, J. Appl. Polym. Sci., 137, 241(1997).
    16. H. Kawakami, S. Kubota, ASAIO J., 43, M490 (1997).
    17. H. Kawakami, M. Mikawa, S. Nagaoka, Macromolecules, 31, 6636(1998).
    18. H. Kawakami, M. Mikawa, and S. Nagaoka, Polym. Prep. Jpn., 47, 2403(1998).
    19. T. H. Kim, W. J. Koros, G. R. Husk, and K. C. O''BRIEN, J. Appl. Polym. Sci., 34,1767(1987).
    20. S. A. Stern, Y. Mi, and H. Yamamoto, J. Polym. Sci., Polym. Phys. Ed., 27, 1887(1989).
    21. M. R. Coleman, W. J. Koros, J. Membrane. Sci., 50, 285(1990).
    22. S. A. Stern, J. Membrane. Sci., 94, 1(1994).
    23. H. Kawakami, J. Anzai, and S. Nagaoka, J. Membrane. Sci., 57, 789(1995).
    24. Z. K. Xu, M. Bohning, J. Springer, F. P. Glatz, and R. Mulhaupt, J. Polym. Sci., Polym. Phys. Ed., 35, 1855(1997).
    25. M. E. Rezac, E. T. Sorensen, and H. W. Beckham, J. Membrane. Sci., 136, 249(1997).
    26. P. W. Rose and E. M. Liston, Plastic Eng., Oct., 41(1985).
    27. H. Yasuda, M. O. Dumganer, H. C. Marsh, D. S. Yamanash, D. D. Devito, M. L. Woldarsht, J. W. Reed, M. Bessler, M. D. Landers, D. M. Hercules, J. Carver, J. Biomed. Mat. Res., 9, 629(1975).
    28. B. J. Kinzig and R. R. Smardzewski, Surface Technology, 14, 3(1981).
    29. K. J. Gifkins, I. H. Coopes, J. Macromol. Sci.-Chem., A17 (2), 217(1982).
    30. N. Inagaki, K. S. Chen and K. Katsura, J. Appl. Polym. Sci., 26, 2197(1981).
    31. A. K. Sharma, F. Millich and .E. W. Hellmuth, J. Appl. Polym. Sci., 26, 2205(1981).
    32. N. Inagaki and K. Ohsihi, Reactive polymers, 4, 21(1985).
    33. M. Yamamoto, J. Sakata, and M. Hirai, J. Appl. Polym. Sci., Vol. 29, 2981(1984).
    34. M. Kawakami, Y. Yamashita, M. Iwamoto and S. Kagawa, J. Membrane Sci., 19, 249(1984).
    35. N. Inagaki and J. Ohkubo, J. Membrane Sci., 27, 63(1986).
    36. N. Inagaki and H. Katsuoka, J. Membrane Sci., 34, 297(1987).
    37. J. Sakata, M. Yamamoto, and M. Hirai, J. Appl. Polym. Sci., 34, 2701(1987).
    38. N. Inagaki, J. Appl. Polym. Sci., 42, 327(1988).
    39. K. Tanaka, H. kita, T. Sakamoto, and K. I. Okamoto, Polymer Bulletin, 20, 349(1988).
    40. J. Sakata, M. Yamamoto, and M. Hirai, J. Appl. Polym. Sci., 37, 2773(1989).
    41. H. Yasuda and C. P. Ho, J. Appl. Polym. Sci., 39, 1541(1989).
    42. X. Lin, J. X, Y. Yo, J. Chen, G. Zheng, and J. Xu, J. Appl. Polym. Sci., 48, 231(1993).
    43. C. Golander, M. W. Rutland, D. L. Cho, A. Johansson, H. Ringblom, S. Jonsson, and H. K. Yasuda, J. Appl. Polym. Sci., 49, 39(1993).
    44. J. Weichart and J. Muller, J. Membrane Sci., 86, 87(1994).
    45. W. P. Zurawsky, S. Oh, Y. Zeng, and J. K. Koo, J. Appl. Polym. Sci., 57, 1277(1995).
    46. J. Y. Lai, S. H. Chen, W. H. Chung, A. A. Wang and R. C. Ruaan, J. Membrane Sci., 124, 273(1997).
    47. X. Lin, X. Qiu, G. Zheng, and J. Xu, J. Appl. Polym. Sci., 58, 2137-2139(1995).
    48. Y. X. Qiu, D. Klee, W. Pluster, B. Severich, and H. Hocker, J. Appl. Polym. Sci., 61, 2373(1995).
    49. H. V. Boenig, "Fundamentals of Plasma Chemistry and Technology", Technomic. Publishing Co. Inc., New York, (1988).
    50. H. V. Boenig, "Plasma Science and Technology", Cornell University Press, New York, (1982).
    51. H. V. Boening, "Plasma Polymerization" in "Encyclopedia of Polymer Science and Engineering", 2nd Ed. 11, 248(1987).
    52. H. Yasuda, "Plasma for Modification of Polymers" in "Plasma Chemistry of Polymers", M. Shen (Ed), Marcel Dekker, New York, 15, (1976).
    53. H. Yasuda, "Plasma Polymerization", Academic Press, London, (1985).
    54. M. Yoshikawa, T. Ezaki, K. Sanui and N. Ogata, J. Appl. Polym. Sci., 35, 145 (1988).
    55. R. Y. M. Huang and X. Feng, J. Membrane Sci., 84, 15 (1993).
    56. P. W. Kramer, Y. S. Yeh and H. Yasuda, J. Membrane Sci., 46, 1(1989).

    QR CODE
    :::