| 研究生: |
周基霖 Ji-Lin Jou |
|---|---|
| 論文名稱: | Rogue waves in wind driven water surface wave turbulence |
| 指導教授: |
伊林
Lin I |
| 口試委員: | |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 英文 |
| 論文頁數: | 86 |
| 中文關鍵詞: | 突波 、瘋狗浪 、風浪 、紊波 、盪動波 、二維波聚焦 、希爾伯特-黃轉換 |
| 外文關鍵詞: | Wind-wave, Sloshing mode, 2D wave focusing, Hilbert-Huang transformation |
| 相關次數: | 點閱:13 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
突波(瘋狗浪、rogue wave)為突然出現、消失的時空局部罕見極端事件。其難以預測,卻廣泛存在於許多受強外界驅動的非線性系統中。水波系統裡,多數實驗皆透過機械控制槳葉,在局部區域產生紊波或大振幅瘋狗浪,探討其統計行為。然而,自然中常見的水波——風驅動之風浪(wind-wave),其多尺度紊波的時空間波形演化和瘋狗浪的形成,卻鮮少探討。
本研究中,我們建立水平風驅動之風浪系統,並藉由光擴散成像技術,重建三維空間上波高分布。隨著風速提升,我們觀察到系統進入穩定紊波狀態,伴隨出現具有不規則波包的間歇性行進高頻大振幅水波、以及局部隨機出現的瘋狗浪。此外,經由隨機共振,在強風驅動下,水面亦於紊波中篩選出系統的尺度的盪動模態(sloshing mode)。對於上述間歇性大振幅行進波之生成,我們發現,其乃肇因於盪動波在槽畔小向風距離(fetch)處之週期性水面升降,而致之水面風速調變(modulation)。在此風速調變中,高水面具有高風速下,強大的風浪交互作用產生大振幅行進波。隨著此行進波向下游傳播,由於進一步的紊流風和水波相互作用,使振幅包絡形狀變差,導致非高斯水面高度分布具有高度拉伸的尾巴,以及瘋狗浪在大向風距離處的生成。
為了探討多尺度風浪紊波模態間之交互作用、及瘋狗浪之後續生成機制,利用希爾伯特-黃轉換,將多尺度紊波振動拆解成不同模態。我們發現,在高波峰區域,不同模態之間具有很強的相位-振幅調製,大尺度模態波峰上易產生高振幅的小尺度模態。經由此現象,可以擴展先前提出的風浪交互作用觀點:在風場吹拂下,波峰相對於波谷,由於具有較強的風浪交互作用,水面振動之大尺度模態波峰能夠激發小尺度模態之產生。這種機制可能是水面上多尺度風浪紊波形成的通用途徑之一。另一方面同時也發現,行進波峰成新月形狀、並具有2+1維時空間調製,而瘋狗浪多數好發於兩交錯新月波之尾部。基於惠更斯原理(Huygens principle),可以了解,各個同步之小尺度模態形成的聚焦結構,是瘋狗浪在2+1維風浪紊波中形成的重要因素之一。
Rogue wave events (RWEs), the unpredictable, spatiotemporal localized, and suddenly appeared rare extreme events, extensively appear in several nonlinear wave systems. Although RWEs are firstly observed on wind-driven ocean surfaces, in water surface wave systems, the previous laboratory studies are mainly focused on mechanically generated waves.
In this work, using diffusive light photography, we experimentally investigate the spatiotemporal dynamics of RWEs formation on the system of water surface wave solitary driven by wind. After the transition to steady wave turbulent state by increasing averaged wind speed, it is found that RWEs uncertainly emerge in the traveling burst with intermittent large irregular envelopes and high-frequency fluctuations. The bursts are associated with the stochastic resonant slow periodic wave, called sloshing wave or seiche, selected by the finite tank length under noisy driving. We propose that the emergence of the sequential large-amplitude bursts is caused by the modulated surface wind speed through the slow oscillated surface level of the sloshing wave in the small fetch region. As the bursts propagate downstream, their envelope shapes deteriorate through further turbulent wind and water wave interactions, which cause the non-Gaussian water surface height histogram with a highly stretched tail, and the generation of the uncertain RWEs in the middle fetch region.
To study the interactions between different modes in turbulence and the following formation process of the RWEs, Hilbert-Huang transformation is used to decompose wave turbulence with multiscale. It is found that the propagating crests are 2+1D spatiotemporally modulated, and the rogue waves mostly appear on the crossing tail of two crescent wind-generated wave crests. By decomposing the continuous power spectrum into empirical mode functions with specific scales, the strong phase-amplitude couplings among the different modes are identified on the high crests. That manifests the slow modes crests excite the fast modes, because of robust wind-wave interactions according to the wind profile. This mechanism may be one of the generic routes to excite the multiscale wave turbulent on the wind-driven water surface. Together with Huygens principle, the synchronized focusing structure with concave crest fronts of different modes is the key to RWE generation.
[1] J. Dudley, G. Genty, A. Mussot, A. Chabchoub, and F. Dias, “Rogue waves and analogies in optics and oceanography.” Nat. Rev. Phys. 1, 675–689 (2019).
[2] A. N. Ganshin, V. B. Efimov, G. V. Kolmakov, L. P. Mezhov-Deglin, and P. V. E. McClintock, “Observation of an Inverse Energy Cascade in Developed Acoustic Turbulence in Superfluid Helium,” Phys. Rev. Lett. 101, 065303 (2008).
[3] D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450, 1054–1057 (2007).
[4] A. Montina, U. Bortolozzo, S. Residori, and F. T. Arecchi, “Non-gaussian statistics and extreme waves in a nonlinear optical cavity,” Phys. Rev. Lett. 103, 173901 (2009).
[5] Y. Y. Tsai, J. Y. Tsai, and L. I, “Generation of acoustic rogue waves in dusty plasmas through three-dimensional particle focusing by distorted waveforms.” Nature Phys 12, 573–577 (2016).
[6] P. C. Lin and L. I, “Synchronization of multiscale waveform focusing for rogue wave generation in dust acoustic wave turbulence,” Phys. Rev. Research 2, 023090 (2020).
[7] C. Kharif, E. Pelinovsky, and A. Slunyaev, Rogue Waves in the Ocean (Springer, 2009) Chap. 1.
[8] N. Akhmediev and E. Pelinovsky, “Editorial - introductory remarks on discussion and debate: Rogue waves - towards a unifying concept?” Eur. Phys. J. 185, 1–4 (2010).
[9] A. Chabchoub, N. P. Hoffmann, and N. Akhmediev, “Rogue wave observation in a water wave tank,” Phys. Rev. Lett. 106, 204502 (2011).
[10] M. Onorato, A. R. Osborne, M. Serio, and L. Cavaleri, “Modulational instability and non-gaussian statistics in experimental random water-wave trains,” Physics of Fluids 17, 078101 (2005).
[11] M. Shats, H. Punzmann, and H. Xia, “Capillary rogue waves,” Phys. Rev. Lett. 104, 104503 (2010).
[12] H. Xia, T. Maimbourg, H. Punzmann, and M. Shats, “Oscillon dynamics and rogue wave generation in faraday surface ripples,” Phys. Rev. Lett. 109, 114502 (2012).
[13] A. Toffoli, T. Waseda, H. Houtani, T. Kinoshita, K. Collins, D. Proment, and M. Onorato, “Excitation of rogue waves in a variable medium: An experimental study on the interaction of water waves and currents,” Phys. Rev. E 87, 051201(R) (2013).
[14] H. Y. Chen, C. Y. Liu, and L. I, “Identifying faraday rogue wave precursors from surrounding waveform information,” Phys. Rev. Fluids 3, 064401 (2018).
[15] M. Onorato, A. R. Osborne, and M. Serio, “Modulational instability in crossing sea states: A possible mechanism for the formation of freak waves,” Phys. Rev. Lett. 96, 014503 (2006).
[16] P. K. Shukla, I. Kourakis, B. Eliasson, M. Marklund, and L. Stenflo, “Instability and evolution of nonlinearly interacting water waves,” Phys. Rev. Lett. 97, 094501 (2006).
[17] M. Onorato, L. Cavaleri, S. Fouques, O. Gramstad, P. A. E. M. Janssen, J. Monbaliu, A. R. Osborne, C. Pakozdi, M. Serio, C. T. Stansberg, and et al., “Statistical properties of mechanically generated surface gravity waves: a laboratory experiment in a three-dimensional wave basin,” Journal of Fluid Mechanics 627, 235–257 (2009).
[18] M. Onorato, T. Waseda, A. Toffoli, L. Cavaleri, O. Gramstad, P. A. E. M. Janssen, T. Kinoshita, J. Monbaliu, N. Mori, A. R. Osborne, M. Serio, C. T. Stansberg, H. Tamura, and K. Trulsen, “Statistical properties of directional ocean waves: The role of the modulational instability in the formation of extreme events,” Phys. Rev. Lett. 102, 114502 (2009).
[19] T. Waseda, T. Kinoshita, and H. Tamura, “Evolution of a Random Directional Wave and Freak Wave Occurrence,” Journal of Physical Oceanography 39, 621–639 (2009).
[20] A. Toffoli, O. Gramstad, K. Trulsen, J. Monbaliu, E. Bitner-Gregersen, and M. Onorato, “Evolution of weakly nonlinear random directional waves: laboratory experiments and numerical simulations,” Journal of Fluid Mechanics 664, 313–336 (2010).
[21] Caulliez, G. and Guérin, C. A., “Higher-order statistical analysis of short wind wave fields,” Journal of Geophysical Research: Oceans 117 (2012).
[22] A. Slunyaev, M. Klein, and G. F. Clauss, “Laboratory and numerical study of intense envelope solitons of water waves: Generation, reflection from a wall, and collisions,” Physics of Fluids 29, 047103 (2017).
[23] A. Zavadsky and L. Shemer, “Investigation of statistical parameters of the evolving wind wave field using a laser slope gauge,” Physics of Fluids 29, 056602 (2017).
[24] Q. Zou and H. Chen, “Wind and Current Effects on Extreme Wave Formation and Breaking,” Journal of Physical Oceanography 47, 1817–1841 (2017).
[25] A. Toffoli, D. Proment, H. Salman, J. Monbaliu, F. Frascoli, M. Dafilis, E. Stramignoni, R. Forza, M. Manfrin, and M. Onorato, “Wind generated rogue waves in an annular wave flume,” Phys. Rev. Lett. 118, 144503 (2017).
[26] H. L. von Helmholtz, “On discontinuous movements of fluids,” Philosophical Magazine 36, 337–346 (1868).
[27] T. E. Faber, Fluid dynamics for physicists, 1st ed. (Cambridge, 1995) Chap. 1, 5, 7, and 8.
[28] J. Hoepffner, R. Blumenthal, and S. Zaleski, “Self-similar wave produced by local perturbation of the kelvin-helmholtz shear-layer instability,” Phys. Rev. Lett. 106, 104502 (2011).
[29] O. M. Phillips, “On the generation of waves by turbulent wind,” Journal of Fluid Mechanics 2, 417–445 (1957).
[30] I. R. Young, Wind Generated Ocean Waves, 1st ed. (Elsevier, 1999) Chap. 4 and 5.
[31] J. P. Matas, S. Marty, M. S. Dem, and A. Cartellier, “Influence of gas turbulence on the instability of an air-water mixing layer,” Phys. Rev. Lett. 115, 074501 (2015).
[32] S. Perrard, A. Lozano-Durán, M. Rabaud, M. Benzaquen, and F. Moisy, “Turbulent windprint on a liquid surface,” Journal of Fluid Mechanics 873, 1020–1054 (2019).
[33] J. W. Miles, “On the generation of surface waves by shear flows,” Journal of Fluid Mechanics 3, 185–204 (1957).
[34] P. B. Marc and F. Veron, “Structure of the airflow above surface waves,” Journal of Physical Oceanography 46, 1377–1397 (2016).
[35] M. Aulnette, M. Rabaud, and F. Moisy, “Wind-sustained viscous solitons,” Phys. Rev. Fluids 4, 084003 (2019).
[36] F. Collard and G. Caulliez, “Oscillating crescent-shaped water wave patterns,” Physics of Fluids 11, 3195–3197 (1999).
[37] A. Chabchoub, N. Hoffmann, H. Branger, C. Kharif, and N. Akhmediev, “Experiments on wind-perturbed rogue wave hydrodynamics using the peregrine breather model,” Physics of Fluids 25, 101704 (2013).
[38] N. J. M. Laxague, M. Curcic, J. Björkqvist, and B. K. Haus, “Gravitycapillary wave spectral modulation by gravity waves,” IEEE Transactions on Geoscience and Remote Sensing 55, 2477–2485 (2017).
[39] N. Takagaki, S. Komori, K. Iwano, N. Suzuki, and H. Kumamaru, “Generation method of wind waves under long-fetch conditions over a broad range of wind speeds,” Procedia IUTAM 26, 184 – 193 (2018), iUTAM Symposium on Wind Waves.
[40] W. Y. Zhang, W. X. Huang, and C. X. Xu, “Very large-scale motions in turbulent flows over streamwise traveling wavy boundaries,” Phys. Rev. Fluids 4, 054601 (2019).
[41] C. Jiang, Y. Yang, and B. Deng, “Study on the nearshore evolution of regular waves under steady wind,” Water 12, 686 (2020).
[42] W. B. Wright, R. Budakian, and S. J. Putterman, “Diffusing light photography of fully developed isotropic ripple turbulence,” Phys. Rev. Lett. 76, 4528–4531 (1996).
[43] J. L. Jou, W. S. Lo and L. I, “Rogue waves associated with resonant slow sloshing waves spontaneously excited in wind-driven water wave turbulence,” Physics of Fluids 32, 122120 (2020).
[44] J. L. Jou, W. S. Lo and L. I, “Rogue wave generation in wind-driven water wave turbulence through multiscale phase-amplitude coupling, phase synchronization, and self-focusing by curved crests,” Physics of Fluids 33, 102105 (2021).
[45] S. Nazarenko, Wave turbulence, 1st ed. (Springer, 2011) Chap. 1, 2, and 3.
[46] E. Falcon, C. Laroche, and S. Fauve, “Observation of gravity-capillary wave turbulence,” Phys. Rev. Lett. 98, 094503 (2007).
[47] H. Punzmann, M. G. Shats, and H. Xia, “Phase randomization of threewave interactions in capillary waves,” Phys. Rev. Lett. 103, 064502 (2009).
[48] P. Cobelli, A. Przadka, P. Petitjeans, G. Lagubeau, V. Pagneux, and A. Maurel, “Different regimes for water wave turbulence,” Phys. Rev. Lett. 107, 214503 (2011).
[49] L. Deike, D. Fuster, M. Berhanu, and E. Falcon, “Direct numerical simulations of capillary wave turbulence,” Phys. Rev. Lett. 112, 234501 (2014).
[50] Q. Aubourg and N. Mordant, “Nonlocal resonances in weak turbulence of gravity-capillary waves,” Phys. Rev. Lett. 114, 144501 (2015).
[51] A. Costa, A. R. Osborne, D. T. Resio, S. Alessio, E. Chrivì, E. Saggese, K. Bellomo, and C. E. Long, “Soliton turbulence in shallow water ocean surface waves,” Phys. Rev. Lett. 113, 108501 (2014).
[52] M. Derakhti, J. Thomson, and J. T. Kirby, “Sparse Sampling of Intermittent Turbulence Generated by Breaking Surface Waves,” Journal of Physical Oceanography 50, 867–885 (2020).
[53] P. H. Diamond, S.-I. Itoh, and K. Itoh, Modern Plasma Physics: Physical Kinetics of Turbulent Plasmas, 1st ed., Vol. 1 (Cambridge, 2010).
[54] Y. Y. Tsai, M. C. Chang, and L. I, “Observation of multifractal intermittent dust-acoustic-wave turbulence,” Phys. Rev. E 86, 045402(R) (2012).
[55] P. C. Lin and L. I, “Interacting multiscale acoustic vortices as coherent excitations in dust acoustic wave turbulence,” Phys. Rev. Lett. 120, 135004 (2018).
[56] Y. Kuramoto, D. Battogtokh, and H. Nakao, “Multiaffine chemical turbulence,” Phys. Rev. Lett. 81, 3543–3546 (1998).
[57] A. S. Mikhailov and K. Showalter, “Control of waves, patterns and turbulence in chemical systems,” Physics Reports 425, 79 – 194 (2006).
[58] D. Pierangeli, F. Di Mei, G. Di Domenico, A. J. Agranat, C. Conti, and E. DelRe, “Turbulent transitions in optical wave propagation,” Phys. Rev. Lett. 117, 183902 (2016).
[59] E. Falcon, S. Fauve, and C. Laroche, “Observation of intermittency in wave turbulence,” Phys. Rev. Lett. 98, 154501 (2007).
[60] G. Michel, F. Pétrélis, and S. Fauve, “Observation of thermal equilibrium in capillary wave turbulence,” Phys. Rev. Lett. 118, 144502 (2017).
[61] P. Denissenko, S. Lukaschuk, and S. Nazarenko, “Gravity wave turbulence in a laboratory flume,” Phys. Rev. Lett. 99, 014501 (2007).
[62] Q. Aubourg and N. Mordant, “Investigation of resonances in gravitycapillary wave turbulence,” Phys. Rev. Fluids 1, 023701 (2016).
[63] D. Eeltink, A. Lemoine, H. Branger, O. Kimmoun, C. Kharif, J. D. Carter, A. Chabchoub, M. Brunetti, and J. Kasparian, “Spectral up- and downshifting of Akhmediev breathers under wind forcing,” Physics of Fluids 29, 107103 (2017).
[64] A. Paquier, F. Moisy, and M. Rabaud, “Surface deformations and wave generation by wind blowing over a viscous liquid,” Physics of Fluids 27, 122103 (2015).
[65] C. Müller, P. Garrett and A. Osborne, “Rogue waves: The fourteenth ’aha huliko’a hawaiian winter workshop,” Oceanography 18, 66–70 (2005).
[66] W. Xiao, Y. Liu, G. Wu, and D. K. P. Yue, “Rogue wave occurrence and dynamics by direct simulations of nonlinear wave-field evolution,” Journal of Fluid Mechanics 720, 357–392 (2013).
[67] S. Stole-Hentschel, K. Trulsen, L. B. Rye, and A. Raustol, “Extreme wave statistics of counter-propagating, irregular, long-crested sea states,” Physics of Fluids 30, 067102 (2018).
[68] R. El Koussaifi, A. Tikan, A. Toffoli, S. Randoux, P. Suret, and M. Onorato, “Spontaneous emergence of rogue waves in partially coherent waves: A quantitative experimental comparison between hydrodynamics and optics,” Phys. Rev. E 97, 012208 (2018).
[69] A. Wang, A. Ludu, Z. Zong, L. Zou, and Y. Pei, “Experimental study of breathers and rogue waves generated by random waves over non-uniform bathymetry,” Physics of Fluids 32, 087109 (2020).
[70] C. Kharif and E. Pelinovsky, “Physical mechanisms of the rogue wave phenomenon,” European Journal of Mechanics - B/Fluids 22, 603 – 634 (2003).
[71] A. N. Pisarchik, R. Jaimes-Reátegui, R. Sevilla-Escoboza, G. HuertaCuellar, and M. Taki, “Rogue waves in a multistable system,” Phys. Rev. Lett. 107, 274101 (2011).
[72] U. Kanoglu, V. V. Titov, B. Aydin, C. Moore, T. S. Stefanakis, H. Zhou, M. Spillane, and C. E. Synolakis, “Focusing of long waves with finite crest over constant depth,” Proceedings of the Royal Society A 469, 20130015 (2013).
[73] A. Zavadsky, D. Liberzon, and L. Shemer, “Statistical Analysis of the Spatial Evolution of the Stationary Wind Wave Field,” Journal of Physical Oceanography 43, 65–79 (2013).
[74] W. S. Lo, “Percolating transition from weak to strong turbulence of windinduced water surface waves,” National Central University (2021), master’s thesis, National Central University.
[75] N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N. C. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis,” Proc. R. Soc. Lond. A. 454, 903–995 (1998).
[76] N. E. Huang and S. S. P. Shen, Hilbert-Hung transform and its applications, 2nd ed. (World Scientific, 2014) Chap. 1, 2, 7, and 13.
[77] A. B. L. Tort, R. Komorowski, H. Eichenbaum, and N. Kopell, “Measuring phase-amplitude coupling between neuronal oscillations of different frequencies,” Journal of Neurophysiology 104, 1195–1210 (2010).
[78] R. A. Ibrahim, Liquid sloshing dynamics, 1st ed. (Cambridge, 2005) Chap. 1 and 2.
[79] F. Ardhuin, F. Collard, and B. Chapron, “Observation of swell dissipation across oceans.” Geophysical Research Letters 36, L06607 (2009).
[80] J. H. Jung, H. S. Yoon, and C. Y. Lee, “Effect of natural frequency modes on sloshing phenomenon in a rectangular tank,” International Journal of Naval Architecture and Ocean Engineering 7, 580 – 594 (2015).
[81] A. Toffoli and E. M. Bitner-Gregersen, “Types of ocean surface waves, wave classification,” in Encyclopedia of Maritime and Offshore Engineering (American Cancer Society, 2017) pp. 1–8.
[82] G. H. Keulegan, “Wind tides in small closed channels,” Journal of research of the National Bureau of Standards 46, 358 (1951).
[83] A. Paquier, “Generation and growth of wind waves over a viscous liquid,” (2016).