| 研究生: |
彭瀚萱 Han-Hsuan Peng |
|---|---|
| 論文名稱: |
NSR觸媒結合電漿技術去除NOx之研究 Combining catalysis and non-thermal plasma over a perovskite-like catalyst for NOx storage and reduction |
| 指導教授: |
張木彬
Moo-been Chang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程研究所 Graduate Institute of Environmental Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 128 |
| 中文關鍵詞: | 氮氧化物 、NSR 、非熱電漿 、Perovskite 型觸媒 |
| 外文關鍵詞: | NOx storage, Perovskite catalyst, Non-thermal plasma, NSR |
| 相關次數: | 點閱:18 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
柴油引擎因其高於汽油引擎的燃油效率與較低的二氧化碳排放優勢下,逐漸成為未來趨勢的車種。且柴油引擎所排放的氮氧化物佔所有移動污染源65%,而此一污染物更是柴油引擎所排放之尾氣中,最為人所重視的污染物之一,因此,世界各國無一不積極投入氮氧化物的改善技術。因此本研究擬研發一低溫、低成本、高效率之NSR (NOX Storaged Reduction)觸媒並結合非熱電漿技術針對柴油引擎中之氮氧化物去除進行討論。本研究利用以Sr2MnO4觸媒作為基底,藉鉀、鈷及BaO/Al2O3的添加進行改質,並比較改質之觸媒其活性及物性。研究結果顯示,SrKMn0.8Co0.2O4/BaO/Al2O3觸媒於NO濃度500 ppm、反應溫度300oC、空間流速48000 h-1、氧氣含量5%下具有最佳之NOx吸附能力(209 µmol/g),但當氧氣含量提高至10%時,觸媒之NOx吸附能力有些微下降,表示觸媒在氧氣含量過多的條件下會使觸媒在短時間內將大量的NO氧化為NO2,進而使觸媒的吸附量下降。而CO2和H2O(g)的添加亦會降低觸媒吸附NOx之能力。在NOx電漿還原方面,當氣體流量 50 sccm,空間流速2000 h-1,施加電壓 6 kV,放電頻率 6 kHz時,放電時間15 sec即可將80%的NOx還原成N2;另外,分別添加H2、CO、CH4及H2O於電漿系統中,對於NOx轉化率並無顯著提升,由此結果顯示,此系統能於不添加還原劑時即可達到良好的NOx去除效率。
Lean-burn engine is a promising technology due to its high efficiency, reliability and durability. However, more nitrogen oxides (NOx) are formed under lean-burn condition. NOx not only causes various adverse effects such as acid rain, photochemical smog, deterioration of water quality and visibility, but also harms human health. Hence, how to effectively reduce NOx emissions at a reasonable cost has become an emerging issue. Several methods have been developed for NOx removal, such as direct decomposition, selective catalytic reduction (SCR), and selection non-catalytic reduction (SNCR). In this study, a new NOx storage and reduction (NSR) system is developed for NOx removal by combining catalyst and non-thermal plasma technology (DBD). In this hybrid system, catalyst is mainly used for oxidizing NO to NO2 and storing them on the surface, while non-thermal plasma is applied as a desorption/ reduction step for converting NO2 into N2. Previous study indicates that the amount of stored NOx is the rate-limiting step for the NSR system. The catalyst with a high NOx storage capacity and good reduction performance need to be developed. In this study, SrKMn0.8Co0.2O4 is supported on BaO/Al2O3 to prepare the catalyst. The adsorption experiment was conducted with the gas stream containing 500 ppm NO and 5% O2 with N2 as carrier gas. The results indicate that NOx is effectively adsorbed on the catalyst and converted to N2 at room temperature by applying non-thermal plasma catalysis (η = 80%) and adding appropriate reducing agent can improve it to 84%. The results show that this hybrid system is promising in removing NOx from gas streams.
Bosch H., and Janssen F., Formation and control of nitrogen oxides, Catalysis Today, 2, 369-379, 1988.
Bhatia D., Harold M. P., Balakotaiah V., Modeling the effect of Pt dispersion and temperature during anaerobic regeneration of a lean NOx trap catalyst, Catalysis Today, 151, 314-329, 2010/
Casapua M., Grunwaldt, J.,Maciejewski, M., Wittrock, M., U. Gobel, A.
Baiker., Formation and stability of barium aluminate and cerate in NOx
storage-reduction catalysts, Applied Catalyst B: Environmental, 63, 232-242, 2006.
Corma A., Fornes V., Selective catalytic reduction of NOx on Cu-beta zeolites, Applied Catalysis B: Environmental, 11, 233-243, 1997.
Chen Z., Wang X., Wang Y., Wang R., Pt–Ru/Ba/Al2O3–Ce0.33Zr0.67O2: An effective catalyst for NOx storage and reduction, Journal of Molecular Catalysis A: Chemical, 396, 8-14, 2015.
Chapman B., Glow Discharge Processes, A Wiley-Interscience Publication, 297-342, 1980.
Goldschmidt V. M., Geochemical distribution principles, Shrifter Nofke Videnskaps-Akadmi Oslo I, 1926.
Epling W. S., Parks J.E., Cambell G.C., Yezerets A., Currier N. W., Cambell L.E., Further evidence of multiple NOx sorption sites on NOx storage/reduction catalysts, 96, 1-2, 21-30, 2004.
Eisner A. D., Wiener, R. W., Discussion and evaluation of the volatility test forequivalency of other methods to the federal reference method for fine particulate matter, Aerosol Science and Technology, 36, 433, 2002.
Fogler H. S., Elements of Chemical Reaction Engineering, 3rd ed, Prentice-Hall Inc, 1999.
Flagan R.C., Seinfeld J.H., Fundamentals of air pollution engineering.PrenticeHall, 103, 1988.
Fenimore C. P., Formation of nitric oxide from fuel nitrogen in ethylene flames , Combustion and Flame, 19, 289-296, 1972.
Glarborg P., Jensen A. D., Fuel nitrogen conversion in solid fuel fired Systems, Progress in Energy and Combustion Science, 29(2), 89-113, 2003.
Hodjati S., Vaezzadeh K., Petit C., Pitchon., Kiennemann A., Absorption/desorption of NOx process on perovskites: performances to remove NOx from a lean exhaust gas, Applied Catalysis B: Environmental, 26, 5–16, 2005.
James D., Fourré E., Ishii M., Bowker M., Catalytic decomposition/ regeneration of Pt/Ba(NO3)2 catalysts: NOx storage and reduction, Applied Catalyst B: Environmental, 45, 147-159, 2003.
Jahanmiri A., Rahimpour M. R., Mohamadzaddeh M., Hooshmand N., Taghvaei H., Naphtha cracking through a pulsed DBD plasma reactor: Effect of applied voltage, pulse repetition frequency and electrode material, Chemical Engineering Journal, 191, 416-425, 2012.
Kim H. H., Nonthermal plasma processing for air-pollution control : A historical review, current issues and future prospects, Plasma Processes and Polymers, 1, 91-110, 2004.
Liu G., Gao P. X., A review of NOx storage/reduction catalysts: mechanism, materials and degradation studies, Catalysis Science Technology, 1, 552-568, 2011.
Lindstedt R. P., Lockwood, F. C. and Selim, M. A., Detailed kinetic modelling of chemistry and temperature effect on ammonia oxidation, Combustion Science Technology, 99, 253-276, 1994.
López-Suárez F. E., Illán-Gómez M. J., Bueno-López A., Anderson J. A., NOx storage and reduction on a SrTiCuO3 perovskite catalyst studied by operando DRIFTS, Applied Catalysis B: Environmental, 104, 261–267, 2011.
Li Q., Meng M., Dai F., Zha Y., Xie Y., Hu T., Zhang J., Multifunctional hydrotalcite-derived K/MnMgAlO catalysts used for soot combustion, NOx storage and simultaneous soot–NOx removal, Chemical Engineering Journal, 32, 106–112, 2012.
Li Z., Meng M., Li Q., Xie X., Hu T., Zhang J., Fe-substituted nanometric La0.9K0.1Co1−xFexO3−ı perovskite catalysts used for soot combustion, NOx storage and simultaneous catalytic removal of soot and NOx, Chemical Engineering Journal, 164, 98-10, 2010.
Lindohlm A., Currier N. W., Dawody J., Hidayat A., Li J., Yezerets A., Olsson L., The influence of the preparation procedure on the storage and regeneration behavior of Pt and Ba based NOx storage and reduction catalysts, Applied Catalysis B: Environmental, 88, 240-248, 2009.
Lima, S.M., Assaf, J.M., Peña, M.A., Fierro, J.L.G., Structural features of La1−xCexNiO3 mixed oxides and performance for the dry reforming of methane, Applied Catalysis A: General, 311, 94-104, 2006.
Miller J. A., Browman C. T., Mechanism and modeling of nitrogen chemistry in combustion, Progress in Energy and Combustion Science, 15, 287-338, 1989.
Matsumoto S., DeNOx catalyst for automotive lean burn engine, Catalyst Today, 90, 26-30, 2004.
Mitsuharu K., Film deposition by plasma techniques, Springer-Verlag Berlin Heidelberg, 11-48, 1992.
More P.M., Nguyen D.L., Granger P., Dujardin C., Dongare M. K., Umbarkar S. B., Activation by pretreatment of Ag–Au/Al2O3 bimetallic catalyst to improve low temperature HC-SCR of NOx for lean burn engine exhaust, Applied Catalysis B: Environmental, 174, 145-156, 2015.
Mulla S. S., Chaugule S. S., Yezerets A., Currier N. W., Delgass W. N., Ribeiro F.H., Regeneration mechanism of Pt/BaO/Al2O3 lean NOx trap catalyst with H2, Catalysis Today, 136, 136-145, 2008.
Nehra V., Kumar A., Dwivedi H. K., Atmospheric non-thermal plasma source, International Journal of Engineering, 2, 53-68, 2008.
Otakar, S., Industrial separators for gas cleaning, Wiley-Interscience Publication, 360-379, 1979.
Prathap C., A Ray., Investigation of nitrogen dilution effects on the laminar burning velocity and flame stability of syngas fuel at atmospheric condition, Combustion and Flame, 155, 145-160, 2008.
Pereñíguez R., González-DelaCruz V.M., Holgado J.P., Caballero A., Synthesis and characterization of a LaNiO3 perovskite as precursor for methane reforming reactions catalysts. Applied Catalysis B: Environmental, 93, 346-353, 2010.
Rico-Pérez V., Bueno-López A., Kim D.J., Ji Y., Crocker M., Pt/CexPr1−xO2 (x = 1 or 0.9) NOx storage–reduction (NSR) catalysts, 163, 313-322, 2015.
Raizer Y. P., Allen J. E., Kisin V. I., Gas DischargePhysics, Springer-Verlag Berlin Heidelberg, 8-33, 1991.
Shi C., Zhang Z. C., Crocker M., Xu L., Wang C. Y., Au C. Y., Zhu A. M., Non-thermal plasma-assisted NOx storage and reduction on a LaMn0.9Fe0.1O3 perovskite catalyst, Catalysis Today, 211, 96-103, 2013.
Stubenberger G., R Scharler, Experimental investigation of nitrogen species release from different solid biomass fuels as abasis for release models, Fuel ,87, 793-806, 2008.
Skreiberg Q., Kilpinen P., Glarborg P., Ammonia chemistry below 1400 K under fuel-rich conditions in a flow reactor, Combustion and Flame, 136, 501-508, 2004.
Su Y., Kabin K. K., Harold M. P., Amiridis M. D., Reactor and in situ FTIR studies of Pt/BaO/Al2O3 and Pd/BaO/Al2O3 NOx storage and reduction (NSR) catalysts, Applied Catalysis B: Environmental, 71, 207-215, 2007.
Takahashi N., Yamazaki K., Sobukawa H., Shinjoh H., The low-temperature performance of NOx storage and reduction catalyst, Applied Catalyst B: Environmental, 70, 2007.
Takahara Y., Ikeda A., Nagata M., Sekine Y., Low-temperature NO decomposition in humidified condition using plasma–catalyst system, Catalysis Today, 211, 44–52, 2013.
Teraoka Y., Harada T. Kagawa S., Reaction mechanism of direct decomposition of nitric oxide over Co-and Mn-based perovskite-type oxides, Journal of Chemistry Society, 94, 1887-1891, 1998.
Thomas A., Zhu J., Perovskite-type mixed oxides as catalytic material for NO removal, Applied Catalysis B: Environmental, 92, 225-233, 2009.
Topsoe N. Y., Dumesic J. A., Vanadia/titania catalysts for selective catalytic reduction (SCR) of nitric-oxide by ammonia, Journal of Catalysis, 151, 226-241, 1995.
Teng H., Hsu Y. F., Tu Y. T., Reduction of NO with NH3 over carbon catalysts-the influence of carbon surface structures and the global kinetics, Applied Catalysis B: Environmental, 20, 145-154, 1999.
Trybal R. E., Mass Transfer Operation, McGraw-Hill 3rd, 624, 1980.
Voorhoeve R. J. H., Perovskite-related oxides as oxidation-reduction catalysts, Advanced Material in Catalysis, 129-180, 1977.
Vandooren J., Brian J., Tiggelen V. Comparison of experimental and calculate structure of an ammonia-nitric oxide flame importance of the NH2 + NO reaction, Combustion and Flame, 98, 402-401, 1994.
Vandenbroucke A.M., Morent R., Geyter N.,Leys C., Non-thermal plasmas for non-catalytic and catalytic VOC abatement. Journal of Hazardous Materials, 195, 30-54, 2011.
Wang W., Herreros J. M., Tsolakis A., York A. P. E., Increased NO2 concentration in the diesel engine exhaust for improved Ag/Al2O3 catalyst NH3-SCR activity, Chemical Engineering Journal, 270, 582–589, 2015.
Wood S. C., Select the right NOx control technology, Chemical Engineering Progress, 32-38, 1994.
Waibel R. T., Ultralow NOx burners for industrial process heaters, John Zink company, 19-22, 1993.
Xing N., Wang X., Zhang A., Liu Z., Guo X., Eley-Rideal mode of formamide species formation in selective catalytic reduction of NOx by C2H2 over ferrierite based catalysts, Catalysis Communications, 9, 2117-2120, 2008.
Yu Q. Q., Wang H., Liu T., Xiao L. P., Jiang X. Y., Zheng X. M., high-efficiency removal of NOx using a combined adsorption-discharge plasma catalytic process, Environmental Science & Technology, 46, 2337–2344, 2012.
Yang X., Zhu J., Xu X., Wei K., Active site structure of NO decomposition on Perovskite-like oxides:An investigation from experiment and density functional theory, The Journal of Physical Chemistry, 111, 1487-1490, 2007.
Yuan J. W., Prediction of NOx Emissions in Recovery Boilers - An Introduction to NOx Module, 1999.
You R., Zhang Y., Liu D., Meng M., Jiang Z., Zhang S., Huang Y., A series of ceria supported lean-burn NOx trap catalysts LaCoO3/K2CO3/CeO2 using perovskite as active component, Chemical Engineering Journal, 260, 357-367, 2015.
Yentekakisa I. V., Tellou V., Botzolaki G., Rapakousios I. A., A comparative study of the C3H6 + NO + O2, C3H6 + O2 and NO + O2 reactions in excess oxygen over Na-modified Pt/γ-Al2O3 catalysts, Applied Catalyst B: Environmental, 56, 229-232, 2005.
Yokoi Y., Uchida H., Catalytic activity of perovskite-type oxide catalysts for direct decomposition of NO:Correlation between cluster model calculations and temperature-programmed desorption experiments, Catalysis Today, 42, 167-174, 1998.
Zeldovich Y. B., The oxidation of nitrogen in combustion and explosions, Acta Physicochimica USSR, 21, 4, 577-268, 1947.
Zhang A. S., Chen B. B., Wang X. K., Xu L., Au C., Shi C., Crocker M., NOx storage and reduction properties of model manganese-based lean NOx trap catalysts, Applied Catalysis B: Environmental, 165, 232-244 , 2015.
行政院環境保護署空氣污染物排放清冊 [TEDS8.1 版] (2010)
蘇崇毅,「蜂巢狀波洛斯凱特型觸媒用於合成氣燃燒之研究」,國立成功大學化學工程研究所,臺南,台灣,2007。
空氣污染防治專責人員教材,「氣狀污染物防治」,環境保護署環境 護人員訓練所,2011。
張君正、張木彬,「氮氧化物生成機制與控制技術」,工業污染防治,第13卷,第2期,1994。
楊士朝,「以低溫電漿去除氮氧化物之可行性研究」,國立中央大學環境工程研究所,碩士論文,中壢,1998。
沈孝宗,「以波洛斯凱特型觸媒催化NO還原反應之比較研究」,國立成功大學化學工程研究所,臺南,台灣,1998。
高正雄,「電漿化學」,復漢出版社,台南,1991。
沈克鵬,「揮發性有機物收集及控制介紹」,工業技術研究院綠環所,2010。
黃晴澤,「以非電漿結合吸附劑處理C3F8之研究」,碩士論文,國立中央大學環境工程研究所,中壢,2009年。
許菁珊,「沸石對於光電產業揮發性有機化合物之吸/脫附研究」,碩士論文,國立中山大學環境工程研究所,高雄,2005。
蔣光榮,「NSR觸媒活性與成車應用之研究」,國立中央大學環境工程研究所,中壢,台灣,2009。
赤崎正則、村岡克紀、渡邊征夫、狫原建治,「電漿工學的基礎」,復文書局,9-44頁,1990年。
楊逸楨,「土壤無機相對有機污染物吸附特性之研究」,國立中央大學環境工程研究所,碩士論文,中壢,2007。