跳到主要內容

簡易檢索 / 詳目顯示

研究生: 廖仁熊
Jen-hsiung Liao
論文名稱: 矽摻雜氮化鎵之光伏特性:中間能帶太陽能電池的潛力評估
Photovoltaic characteristics of Si-doped GaN: the potential for intermediate band solar cells
指導教授: 賴昆佑
Kun-Yu Lai
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 69
中文關鍵詞: 中間能帶太陽能電池氮化鎵
外文關鍵詞: intermediate band solar cell, GaN
相關次數: 點閱:8下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中間能帶太陽能電池利用導電帶與價電帶之間的額外能帶,得到寬頻譜的吸光能力,理論上可以打破Shockley-和Queisser 在1963年提出的轉換效率極限(The SQ limit)。中間能帶的存在為太陽能電池帶來兩個額外的次能階躍遷,分別是從價電帶到中間能帶以及中間能帶到導電帶,因此能讓同質的半導體接面吸收多種波長的光。 在本論文中,我們利用矽摻雜之n型氮化鎵製成中間能帶太陽能電池。氮化鎵的能隙為3.4eV,在過去二十年,n型氮化鎵的黃色螢光特性已被科學家所熟知,並被廣泛地研究,黃色螢光的成因為電子從導電帶至中間能帶的能量釋放,而此中間能帶為鎵原子空缺(Ga vacancy)所誘發而成的能帶,該能帶離價電帶頂端約1.2eV。因此n型氮化鎵能吸收的太陽光能量為:3.4 eV、2.2 eV以及1.2 eV。本研究用簡單的p-n-n氮化鎵同質接面,在吸光層中藉由三種不同的矽摻雜濃度,來調變中間能帶太陽能電池的吸光能力。三種吸光層的電子濃度分別為: 1×1017 cm-3(PUN元件)、5×1017 cm-3(Pn-N元件)以及1×1018 cm-3(PnN元件)。
    在AM1.5G太陽光模擬器的照射下,PnN元件具有最大的短路電流,比PUN元件高出80%。雖然PnN元件的開路電壓有些微的下降,但該元件的轉換效率約為PUN元件的1.4倍。此研究結果說明:利用矽摻雜所產生的氮化鎵中間能帶電池,能有效增加元件的吸光能力,並提升整體的光伏效能。


    Intermediate band solar cells (IBSCs) are expected to break the SQ limit with a single junction structure, which is due to the additional energy level induced in the forbidden gap between the conduction band (CB) and the valence band (VB). This stepping-stone-like energy level brings two sub-bandgap transitions within the bandgap (i.e. VB-IB and IB-CB), and therefore allows multi-color absorption with a single junction.
    In this work, we demonstrate the IBSC with Si-doped n-type GaN. The yellow luminescence (YL) of Si-doped GaN has been extensively discussed in the last two decades, and the origin was attributed to the energy transition from CB to the impurity level induced by gallium vacancies and the associate complexes. The yellow-emitting impurity level is employed in the active region to absorb the solar energy of 3.4eV, 2.2eV and 1.2eV. The entire device structure is similar to a simple p-i-n homojunction, except for the slightly Si-doped i-layer. Three types of active regions are fabricated with different doping concentrations: the undoped (1×1017 cm-3, hereafter called PUN), the lightly doped (5×1017 cm-3, called Pn-N), and the moderately doped (1×1018 cm-3, called PnN).
    The J-V measurement under AM1.5G illumination shows greatly enhanced JSC with the PnN sample, which is 80% higher than that of the PUN sample. Although the VOC is slightly decreased, the PnN sample exhibits the efficiency improvement of 40%, indicating the significant contribution of photocurrents from the IB absorption.

    中文摘要 i ABSTRACT ii Acknowledge iii Table of contents iv List of figure v Symbol List x Chapter 1. Introduction 1 Chapter 2. GaN-based IBSC via the yellow-emitting impurity level 2-1. Origin of yellow emission 24 2-2. The concept of yellow-emitting IBSCs 28 Chapter 3. Crystal growth and device fabrication 34 3-1. Crystal growth 34 3-2. Device fabrication 34 Chapter 4. Analysis and discussion 37 4-1. Result analysis-Photoluminescence measurement 37 4-2 Result analysis-the IV curve under Green laser 39 4-3 Result analysis-the IV curve under AM1.5G solar simulator 40 Chapter 5. Conclusion and future work 46 Reference: 51

    [1] R. M. Farrell, C. J. Neufeld, S. C. Cruz, J. R. Lang, M. Iza, S. Keller, S. Nakamura, S. P. DenBaars, U. K. Mishra, and J. S. Speck, “High quantum efficiency InGaN/GaN multiple quantum well solar cells with spectral response extending out to 520 nm”, Appl. Phys. Lett. 98, 201107 (2011).
    [2] R. Dahal, J. Li, K. Aryal, J. Y. Lin, and H. X. Jiang, “InGaN/GaN multiple quantum well solar cells with long operating wavelengths”, Appl. Phys. Lett. 94, 063505 (2010).
    [3] William Shockley and Hans J. Queiwwer, “Detailed balance limit of efficiency of p-n junction solar cells”, J. Appl. Phys. 32, 510 (1961).
    [4] Alexis De Vos, “Detailed balance limit of the efficiency of tandem solar cells”, J. Phys. D: Appl. Phys. 13, 83946 (1980).
    [5] Antonio Luque and Antonio Martı, “Increasing the Efficiency of Ideal Solar Cells by Photon Induced Transitions at Intermediate Levels”, Phys. Rev. Lett. 78, 5014 (1997).
    [6] A. Luque, A. Martí, C. Stanley, N. López, L. Cuadra, D. Zhou and J. L. Pearson, and A. McKee, “General equivalent circuit for intermediate band devices: Potentials, currents and electroluminescence”, J. appl. Phys. 96, 903 (2004).
    [7] Weiming Wang, Albert S. Lin, and Jamie D. Phillips, “Intermediate-band photovoltaic solar cell based on ZnTe:O”, Appl. Phys. Lett. 95, 011103 (2009).
    [8] R. E. Dietz, D. G. Thomas, and J. J. Hopfield, “"Mirror" Absorption and Fluorescence in ZnTe”, Phys. Rev. Lett. 8, 391 (1962).
    [9] N. Lo´pez, L. A. Reichertz, K. M. Yu, K. Campman, and W. Walukiewicz, “Engineering the Electronic Band Structure for Multiband Solar Cells”, Phys. Rev. Lett. 106, 028701 (2011).
    [10] Jasprit Singh, Electronic and Optoelectronic Properties of Semiconductor Structures, Cambridge University Press, New York, 2003
    [11] A. Martí, E. Antolín, E. Cánovas, N. López, P.G. Linares, A. Luque, C.R. Stanley, C.D. Farmer, “Elements of the design and analysis of quantum-dot intermediate band solar cells”, Thin solid film 516, 6716 (2008).
    [12] R. B. Laghumavarapu, M. El-Emawy, N. Nuntawong, A. Moscho, L. F. Lester, and D. L. Huffaker, “Improved device performance of InAs/GaAs quantum dot solar cells with GaP strain compensation layers”, Appl. Phys. Lett. 91 243115 (2007).
    [13] Voicu Popescu, Gabriel Bester, Mark C. Hanna, Andrew G. Norman, and Alex Zunger, “Theoretical and experimental examination of the intermediate-band concept for strain-balanced (In,Ga)As/Ga(As,P) quantum dot solar cells”, Phys. Rev. B 78, 205321 (2008).
    [14] S. M. Hubbard, C. D. Cress, C. G. Bailey, R. P. Raffaelle, S. G. Bailey, and D. M. Wilt, “Effect of strain compensation on quantum dot enhanced GaAs solar cells “, Appl. Phys. Lett. 92, 123512 (2008).
    [15] Denis Guimard, Ryo Morihara, Damien Bordel, Katsuaki Tanabe, Yuki Wakayama, Masao Nishioka, and Yasuhiko Arakawa, ” Fabrication of InAs/GaAs quantum dot solar cells with enhanced photocurrent and without degradation of open circuit voltage”, Appl. Phys. Lett. 96, 203507 (2010).
    [16] T. Sugaya, O. Numakami, S. Furue, H. Komaki, T. Amano, K. Matsubara, Y. Okano, S. Niki, “Tunnel current through a mini band in InGaAs quantum dot superlattice solar cells”, Sol. Energy Mater. Sol. Cells 95, 2920 (2011).
    [17] E. Antolín, A. Martí, P. G. Linares, I. Ramiro, E. Hernández, C. D. Farmer, C. R. Stanley, and A. Luque, “Advanced in quantum dot intermediate band solar cells”, Photovoltaic Specialists Conference (PVSC) 35th IEEE, (2010).
    [18] Yushuai Dai, Christopher G. Bailey, Christopher. Kerestes, David V. Forbes, and Seth M. Hubbard, “Investigation of Carrier Escape Mechanism in InAs/GaAs Quantum Dot Solar Cells”, Photovoltaic Specialists Conference (PVSC) 38th IEEE, (2012).
    [19] E. Antolin, A. Marti, C.D. Farmer, P.G Linares, E. Hernandez, A. M Sanches, T. Ben, S. I. Molina, C.R. Stanley and A. Luque, "Reducing carrier escape in the InAs/GaAs quantum dot intermediate band solar cell," J. Appl. Phys. 108, 064513 (2010).
    [20] C. Tablero, “Electronic and optical analysis of high-efficiency photovoltaic materials based on a GaN semiconductor”, Sol. Energy Mater. Sol. Cells 90, 1734 (2006).
    [21] Kazunori Sato and Hiroshi Katayama-Yoshida, “Electronic and optical analysis of high-efficiency photovoltaic materials based on a GaN semiconductor”, Jpn. J. Appl. Phys. 40, L485 (2001).
    [22] Jian Wang, Yucheng Xing, and Yi Luo, “Ab initio study of GaN periodically substituted by transition metal for intermediate band materials”, Phys. Status Solidi B 248, 964 (2011).
    [23] E. Kulatov, H. Nakayama, H. Mariette, H. Ohta, and Yu. A. Uspenskii, ” Electronic structure, magnetic ordering, and optical properties of GaN and GaAs doped with Mn”, Phys. Rev. B 66, 045203 (2002).
    [24] A. Martı´, C. Tablero, E. Antolı´n, A. Luque, R. P. Campion, S. V. Novikov, C. T. Foxon, “Potential of Mn dopedIn1-xGaxN for implementing intermediate band solar cells”, Sol. Energy Mater. Sol. Cells 93, 641 (2009).
    [25] C. Tablero, A. Martí, and A. Luque, “Ionization energy levels in Mn-doped InxGa1−xN alloys”, J. Appl. Phys. 105, 033704 (2009).
    [26] G. S. Song, M. Kobayashi, J. I. Hwang, T. Kataoka, M. Takizawa, A. Fujimori, T. Ohkouchi, Y. Takeda, T. Okane, Y. Saitoh, H. Yamagami, F.-H. Chang, L. Lee, H.-J. Lin, D. J. Huang, C. T. Chen, S. Kimura, M. Funakoshi, S. Hasegawa, and H. Asahi, “Electronic structure of Ga1−xCrxN and Si-doping effects studied by photoemission and x-ray absorption spectroscopy”, Phys. Rev. B 78, 033304 (2008).
    [27] R. Y. Korotkov, J. M. Gregie, and B. W. Wessels, “Optical properties of the deep Mn acceptor in GaN:Mn”, Appl. Phys. Lett. 80, 1731 (2002).
    [28] Jinn-Kong Sheu, Feng-Wen Huang, Yu-Hsuan Liu, P. C. Chen, Yu-Hsiang Yeh, “Photoresponses of manganese-doped gallium nitride grown by metalorganic vapor-phase epitaxy”, Appl. Phys. Lett. 102, 071107 (2013)
    [29] Feng-Wen Huang, Jinn-Kong Sheu, Ming-Lun Lee, Shang-Ju Tu, Wei-Chih Lai, Wen-Che Tsai, and Wen-Hao Chang, “Linear photon up-conversion of 450 meV in InGaN/GaN multiple quantum wells via Mn-doped GaN intermediate band photodetection Optics express 19 A1211 (2011).
    [30] Shu-Yen Liu, J. K. Sheu, Yu-Chuan Lin, S. J. Tu, F. W. Huang, M. L. Lee, and W. C. Lai, “Mn-doped GaN as photoelectrodes for the photoelectrolysis of water under visible light”, Optics express 20 A678 (2012).
    [31] S. Sonoda, “Partially filled intermediate band of Cr-doped GaN films”, Appl. Phys. Lett. 100, 202101 (2012).
    [32] P. Bogusławski and J. Bernholc, “Doping properties of C, Si, and Ge impurities in GaN and AlN”, Phys. Rev. B 56, 9496 (1997).
    [33] W. Götz, N. M. Johnson, C. Chen, H. Liu, C. Kuo, and W. Imler, “Activation energies of Si donors in GaN”, Appl. Phys. Lett. 68, 3144 (1996)
    [34] J. Neugebauer and C. G. Van de Walle “Gallium vacancies and the yellow luminescence in GaN”, Appl. Phys. Lett. 69, 503 (1996).
    [35] K. Saarinen, T. Laine, S. Kuisma, J. Nissilä, P. Hautojärvi, L. Dobrzynski, J. M. Baranowski, K. Pakula, R. Stepniewski, M. Wojdak, A. Wysmolek, T. Suski, M. Leszczynski, I. Grzegory, and S. Porowski, “Observation of Native Ga Vacancies in GaN by Positron Annihilation”, Phys. Rev. Lett. 79,3030(1997).
    [36] T. Suski, P. Perlin, H. Teisseyre, M. Leszczyn´ ski, I. Grzegory, J. Jun, M. Boc´kowski, and S. Porowski, and T. D. Moustakas, “Mechanism of yellow luminescence in GaN”, Appl. Phys. Lett. 67, 2188 (1995).
    [37] You Wei, Zhang Xiao-Dong, Zhang Li-Min, Yang Zhen, Bian Hai, Liu Zheng-Min, “Yellow and red luminescence in Mg-implanted GaN epitaxial films”, Nuclear Instruments and Methods in Physics Research B 264 41 (2007).
    [38] F. A. Ponce, D. P. Bour, and W. Go¨ tz, and P. J. Wright, “Spatial distribution of the luminescence in GaN thin films”, Appl. Phys. Lett. 68 57 (1996).
    [39] Jörg Neugebauer and Chris G. Van de Walle, “Atomic geometry and electronic structure of native defects in GaN”, Phys. Rev. B 50, 8067 (1994).
    [40] M. J. Puska, C. Corbel, and R. M. Nieminen, “Positron trapping in semiconductors”, Phys. Rev. B 41, 9980 (1990).
    [41] U. Kaufmann, M. Kunzer, H. Obloh, M. Maier, Ch. Manz, A. Ramakrishnan, and B. Santic, Phys. Rev. B 59, 5561 (1999).
    [42] Sam Kyu Noh, Chul-Ro Lee and Seung Eun Park, In-Hwan Lee, In-Hoon Choi, Sung Jin Son, Kee Young Lim and Hyung Jae Lee, “Doping Characteristics of Si-doped n-GaN Epilayers Grown by Low-Pressure Metal-Organic Chemical-Vapor Deposition”, J. Korean Phys. Soc. 32, 851 (1998).
    [43] Feng Qian, Gong Xin, Zhang Xiao-Ju, and Hao Yue, “Photoluminescence characteristics of GaN:Si”, Chinese Phys. 14 2133 (2005).
    [44] H. P. D. Schenk, S. I. Borenstain, A. Berezin, A. Schön, E. Cheifetz, S. Khatsevich, and D. H. Rich, “Band gap narrowing and radiative efficiency of silicon doped GaN”, J. Appl. Phys. 103, 103502 (2008).
    [45] In-Hwan Lee, J. J. Lee, P. Kung, F. J. Sanchez, and M. Razeghi, “Band-gap narrowing and potential fluctuation in Si-doped GaN”, Appl. Phys. Lett. 74, 102 (1999).
    [46] A. Sedhain, J. Li, J. Y. Lin, and H. X. Jiang, “Nature of deep center emissions in GaN”, Appl. Phys. Lett. 96, 151902 (2010).
    [47] C. Hums, T. Finger, T. Hempel, J. Christen, A. Dadgar, A. Hoffmann, and A. Krost, “Fabry-Perot effects in InGaN/GaN heterostructures on Si-substrate “, J. Appl. Phys. 101, 033113 (2007).
    [48] Basanta Roul, Mohana K. Rajpalke, Thirumaleshwara N. Bhat, Mahesh Kumar, A. T. Kalghatgi, S. B. Krupanidhi, Nitesh Kumar, and A. Sundaresan, “Experimental evidence of Ga-vacancy induced room temperature ferromagnetic behavior in GaN films”, Appl. Phys. Lett. 99, 162512 (2011).
    [49] I.M. Dharmadasa, “Third generation multi-layer tandem solar cells for achieving high conversion efficiencies”, Sol. Energy Mater. Sol. Cells 85, 293 (2005).
    [50] Yijun Zhang, Benkang Chang, Jun Niu, Jing Zhao, Jijun Zou, Feng Shi, and Hongchang Cheng, “High-efficiency graded band-gap AlxGa1−xAs/GaAs photocathodes grown by metalorganic chemical vapor deposition”, Appl. Phys. Lett. 99, 101104 (2011).
    [51] Yen-Kuang Kuo, Jih-Yuan Chang, and Ya-Hsuan Shih, “Numerical Study of the Effects of Hetero-Interfaces, Polarization Charges, and Step-Graded Interlayers on the Photovoltaic Properties of (0001) Face GaN/InGaN p-i-n Solar Cell”, IEEE J. of quantum electronics 48, 367 (2012)

    QR CODE
    :::