跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林昌鴻
Chang-hong Lin
論文名稱: 颮線與山脈地形的交互作用:理想模擬研究
The interaction of squall lines with idealized mountain ridges: idealized simulation study
指導教授: 楊明仁
口試委員:
學位類別: 碩士
Master
系所名稱: 地球科學學院 - 大氣物理研究所
Graduate Institute of Atmospheric Physics
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 89
中文關鍵詞: 水躍過程颮線系統
相關次數: 點閱:17下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用Weather Research and Forecasting(WRF)模式,以2008年西南氣流實驗[Southwest Monsoon Experiment(SoWMEX)]探空資料作為模式初始場,模擬颮線通過理想台灣地形時,其結構變化與降雨分佈情形,以及山脈背風處颮線重新生成,並增強的物理過程。吾人並比較依照RKW理論(Rotunno–Klemp–Weisman theory)估算之颮線移動速度與陣風鋒面移速之關係,探討兩種方法估算結果的差異。理想地形實驗包括對稱橢圓山脈、非對稱橢圓山脈以及雙峰山脈三種,探討颮線系統以不同方向通過理想山脈時,理想地形對於颮線結構的改變情形。在本研究中,主要探討的颮線系統移動方向分別為西-東走向和梅雨季常見之西北-東南走向。
      在對流系統以西向東走向的實驗中,通過對稱橢圓山脈地形時,颮線兩端氣流及冷池以繞山的形式通過山脈。而在地形最高的中間部分,颮線因受到山脈阻塞作用最大而消散,造成線狀對流斷成南北兩段;當颮線過山水躍發生後,原本消散的中段對流將再次生成。若將理想地形改為非對稱橢圓山脈後,其氣流繞山與系統再次增強的過程與對稱山脈時類似,主要差別在於較平緩的迎風面山坡讓阻塞效果減弱,而背風面下沉抑制增加,造成迎風面及背風面降水皆減少。雙峰地形實驗中,山谷地形造成明顯的通道效應,導致山谷背風面冷池較弱且降雨量降少。若將系統改以西北-東南走向並通過地形時,所有理想地形模擬結果將呈現颮線系統的水平結構及降水分佈上出現南北不對稱分佈;且系統通過地形時的角度改變,造成通道效應的現象變得不明顯。針對使用RKW理論所計算之理論密度流速而言,當颮線過山時其結果會低於陣風鋒面移速,而將系統改為西北-東南走向後,由於地形阻塞作用較少,冷池過山時其理論密度流速隨時間的變化量將減少。


    Numerical simulations of a squall line traversing an idealized mountain terrain are performed using the high-resolution Weather Research and Forecasting (WRF) model and the homogeneous base-state environment is taken from a sounding data of Southwest Monsoon Experiment (SoWMEX) in June 2008 to investigate the convection structure, cold pool, redevelopment process, and precipitation fields. The theoretical density current speed is calculated following Rotunno, Klemp, and Weisman (1988). The differences between the density-current speed and gust-front speed are discussed. The idealized simulation includes three kinds of mountain terrain, the symmetric, asymmetric and multiple-ridge terrain, respectively. In this study, the direction of squall line includes eastward-moving and southeastward-moving, which is common in the Mei-Yu season.
    The simulation of eastward-moving squall line traverses the symmetric terrain represents that air parcel and cold pool can flow around the mountain. The maximum blocking-effect occurred at mountain ridges, which causes the middle segment of convection dissipated. Thus, squall line is separated into two parts. After squall line traverse mountain ridges, the middle segment of squall lines restrengthen via hydraulic jump process and generate lee vortexes. After the mountain terrain changes from symmetric to asymmetric terrain, a smoother windward slope can leads to more lifting and a steeper slope at lee side causes more adiabatic warming, both lead to weaker cold pool and less precipitation. The simulation of an eastward-moving squall line traversing multiple-ridge yields obvious channel effect, which leads to a weaker cold-pool strength and less precipitation. After the squall line direction change from eastward-moving to southeastward-moving, the system of horizontal structure and precipitation fields represent the asymmetric distribution in the north-south direction. When the eastward-moving system encounters mountain ridges, the comparison of the calculated density current speed shows that it underestimates the gust-front speed. The simulations of the southeastward-moving system represents that the squall line aligns at an angle to the mountain ridge, which leads to a system traverse a smoother slope and then reduce the blocking effect and the variation of cold-pool speed.

    一、 前 言 1 1-1 文獻回顧 1 1-2 研究動機 4 1-3 論文架構 5 二、 研究方法 6 2-1 模式簡介 6 2-2 模式設定 7 2-3 暖胞設定 8 2-4 模式初始場設定 8 2-5 理想山脈地形設定 10 2-6 Froude number 11 2-7 理論密度流速 11 三、西-東系統走向的模擬結果 13 3-1對稱橢圓山脈實驗 13 3-2非對稱橢圓山脈實驗 16 3-3雙峰山脈實驗 17 四、西北-東南系統走向的模擬結果 20 4-1對稱橢圓山脈實驗 20 4-2非對稱橢圓山脈實驗 22 4-3雙峰山脈實驗 23 五、理論密度流速與陣風鋒面移速之比較 27 5-1西-東走向的系統 28 5-2西北-東南走向的系統 29 六、結論 31 參考文獻 35 圖表 37

    王寶貫 1997:雲物理學初版,國立編譯館主編,渤海堂文化公司印行。

    Frame, J. W. and P. M. Markowski, 2006: The interaction of simulated squall lines with idealized mountain ridges.Mon. Wea. Rev., 134, 1919-1941.

    French, A. J., and M. D. Parker, 2010: The response of simulated nocturnal convective systems to a developing low-level jet. J. Atmos. Sci., 67, 3384-3408.

    Houze, S. A. Rutledge, M. I. Biggerstaff, and B. F. Smull, 1989: Interpretation of Doppler weather radar displays in midlatitude mesoscale convective systems. Bull.Amer.Meteor. Soc., 70, 608–619.

    Letkewicz, C. E., and M. D. Parker, 2011: Impact of environmental variations on simulated squall lines interacting with terrain. Mon. Wea. Rev., 139, 3163–3183.

    Lin, Yuh-Lang, Shu-Yun Chen, Christopher M. Hill, Ching-Yuang Huang, 2005: Control Parameters for the Influence of a Mesoscale Mountain Range on Cyclone Track Continuity and Deflection. J. Atmos. Sci., 62, 1849–1866.

    Mahoney, K. M., G. M. Lackmann, and M. D. Parker, 2009: The role of
    momentum transport in the motion of a quasi-idealized mesoscale convective system. Mon. Wea. Rev., 137, 3316–3338.

    Meng, Z., F. Zhang, P. Markoswki, D. Wu, and K. Zhao, 2012: A modeling study on the development of a bowing structure and associated rear inflow within a squall line over south China. J. Atmos. Sci., 69, 1182–1207.

    Parker, M. D., 2008: Response of simulated squall lines to low-level
    cooling. J. Atmos. Sci., 65, 1323–1341.

    Rotunno, R., J. B. Klemp, and M. L. Weisman, 1988: A theory for strong, long-lived squall lines. J. Atmos. Sci., 45, 463–485.

    Weisman, Morris L., Richard Rotunno, 2004: “A Theory for Strong Long-Lived Squall Lines” Revisited. J. Atmos. Sci., 61, 361–382.

    Yang, M.-J., and R. A. Houze, Jr., 1995: Multicell squall line structure as a manifestation of vertically trapped gravity waves. Mon. Wea. Rev., 123, 641–661.

    QR CODE
    :::