跳到主要內容

簡易檢索 / 詳目顯示

研究生: 廖啟珽
Chi-Ting Liao
論文名稱: 福衛五號軌道推算軟體敏感度及飛行資料分析
指導教授: 張起維
Loren Chang
口試委員:
學位類別: 碩士
Master
系所名稱: 地球科學學院 - 太空科學研究所
Graduate Institute of Space Science
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 88
中文關鍵詞: 軌道推算軌道擾動福爾摩沙衛星五號
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 人造衛星或天體之軌道狀態 (orbital state)定義為該物體在某時間點的位置速度向量或是軌道參數 (orbit elements)。在知道某衛星的初始狀態 (initial state)後,便可運用軌道推算器 (orbit propagator)來推算該衛星在未來的軌道狀態,也因此其成為人造衛星星載導航功能的重要元件。軌道推算器之演算需考慮到簡化二體運動 (Keplerian),以及在真實太空環境出現的其他受力,如:地球重力場分布不均、空氣阻力、三體重力場、太陽輻射壓力等。前述非克卜勒受力統稱為軌道擾動 (orbit perturbations),會導致衛星實際的軌跡偏離理想的克卜勒軌道。
    軌道推算器的選擇與設計需考量到準確度與運算效率兩種對立因素。軌道推算器若以數值積分的方式解衛星的運動方程式,便可以較準確的方式模擬軌道擾動之影響,但與解析解軌道推算器相比同時增加了所需計算資源與時間。本論文將探討以MATLAB為基礎自製之UPOP (UPperair Orbit Propagator)數值解軌道推算器:由最初始的座標轉換問題、積分器誤差容忍度乃至於受力模型應用,並與福衛五號之原始飛行資料進行比對。旨在建立一種於一週內無軌道測定 (orbit determination)資料輸入最終推算誤差仍能小於10公里之軌道推算器。


    The orbital state of the satellite or celestial body is defined as its position and velocity vectors or orbit elements during a specific epoch. After knowing the initial state of the satellite, we can use an orbit propagator to propagate the future ephemeris of the satellite, which makes it an important function inside the navigation filter of an artificial satellite. The algorithm of an orbit propagator should consider not only the simplified Keplerian problem but also other forces in the real space environment: e.g. the aspherical gravitational forces from the Earth, drag, third-body effect, solar radiation pressure, etc. The non-Keplerian forces above are called orbit perturbations, which will make the real trajectory of the satellite differ from the ideal Keplerian orbit.
    One should consider the accuracy and computational efficiency when it comes to the choice and design of an orbit propagator, especially if intended for onboard use. The effect of orbit perturbations can be simulated more accurately using a numerical integration approach, but will cost more computationally compared to the analytical solution. This thesis presents and examines the sensitivities of our self-made, MATLAB-based UPOP (UPperair Orbit Propagator) orbit propagator: from the tasks of coordinate transformations, integrator tolerance, the implementations of force models, and finally compares propagated trajectories with the raw flight data of FORMOSAT-5. Our goal is to create an orbit propagator which has the propagational error less than 10 km after 7-days of propagation without orbit determination data inputs.

    摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VI 表目錄 IX 一、 緒論 1 1.1 軌道推算 1 1.2 福爾摩沙衛星五號 2 1.3 軌道擾動 3 1.4 UPOP軌道推算器 6 1.5 緒論 6 二、 ECI/ECEF座標轉換 7 2.1 ECI、ECEF座標系與座標轉換之重要性 7 2.2 座標轉換矩陣 9 2.3 座標轉換結果 21 三、積分器與誤差容忍度 23 3.1 ode45積分器 23 3.2 積分誤差容忍度之選定 25 四、重力場模型 27 4.1 球諧函數 27 4.2 EGM2008重力場模型引用 29 4.3 重力場模型階數級數之選定 32 4.4 UPOP軌道推算器初步效能驗證 36 五、空氣阻力 39 5.1 空氣阻力 39 5.2 NRLMSISE-00經驗大氣模型 40 5.3 福衛五號基本參數與飛行姿態 42 5.4 UPOP軌道推算器加入空氣阻力影響效能驗證 43 5.5 衛星姿態變化影響 51 六、第三體引力 53 6.1 第三體引力 53 6.2 各軌道擾動加速度大小比較 57 七、結論與未來展望 61 7.1 對軌道擾動的基礎認識 61 7.2 座標轉換問題 61 7.3 積分器誤差容忍度選定 61 7.4 重力場模型之引用 62 7.5 空氣阻力之引用 62 7.6 第三體引力 63 7.7 未來展望 63 參考文獻 65 附錄 68 附錄一:黃道緯度章動與傾角章動級數 68 附錄二:空氣阻力引用 續 69 附錄三:UPOP軌道推算器使用說明 72

    [1] Hoots, F. R. & Roehrich, R. L., “Spacetrack Report No. 3: Models for propagation of NORAD element sets”, Aerospace Defense Center, Peterson Air Force Base, 1980.
    [2] National Space Organization, “FORMOSAT-5 Navigation Filter Design and Tuning Report”, 2009.
    [3] STK Help External Propagator. Retrieved June 16, 2020, from
    https://help.agi.com/stk/index.htm#stk/veh_propagator_external.htm
    [4] Systems Tool Kit (STK). Retrieved June 16, 2020, from https://www.agi.com/products/stk.
    [5] Pavlis, N. K., Holmes, S. A., Kenyon, S. C., & Factor, J. K., “The development and evaluation of the Earth Gravitational Model 2008 (EGM2008)”, Journal of Geophysical Research: Solid Earth, Vol 117(B4), 2012.
    [6] Vallado, D. A., Special Perturbation Techniques., Fundamentals of Astrodynamics and Applications., Third Edition, pp. 515–597, Microcosm, Hawthorne, CA., 2007.
    [7] Shampine, L. F. & M. W. Reichelt, “The MATLAB ODE Suite”, SIAM Journal on Scientific Computing, Vol 18, pp. 1–22, 1997.
    [8] Picone, J. M., Hedin, A. E., Drob, D. P., & Aikin, A. C, “NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues”, Journal of Geophysical Research: Space Physics, Vol 107(A12), 2002.
    [9] Vallado, D. A., Coordinates and Time Systems., Fundamentals of Astrodynamics and Applications., Third Edition, pp. 137–242, Microcosm, Hawthorne, CA., 2007.
    [10] Mueller, W. H., “The spin, the nutation, and the precession of the Earth's axis revisited from a (numerical) mechanics perspective”, ZAMM Journal of applied mathematics and mechanics, Vol 95, 2015.
    [11] Precession and Nutation. Retrieved June 16, 2020, from https://www2.mps.mpg.de/homes/fraenz/systems/systems3art/node3.html
    [12] Defense Mapping Agency, “Supplement to Department of Defense World Geodetic System 1984 Technical Report: Part I - Methods, Techniques, and Data Used in WGS 84 Development”, DMA Tech. Rep. 8350.2-A, Building 56, U.S. Naval Observatory, Washington, DC, 1987.
    [13] NIMA, “Department of Defense World Geodetic System 1984”, NIMA-TR 8350.2, 3rd ed, Amendment 1, Washington, DC, National Imagery and Mapping Agency, 2000.
    [14] Astrium, “ROCSAT2 Earth Rotation Matrix Computation”, 2001
    [15] Newcomb, S., A Compendium of Spherical Astronomy., Reprint edition. NewYork, Dover Publications, 1906.
    [16] juliandate. Retrieved June 19, 2020, from
    https://www.mathworks.com/help/aerotbx/ug/juliandate.html
    [17] Astronomical Times. Retrieved June 19, 2020, from
    https://www.cv.nrao.edu/~rfisher/Ephemerides/times.html#TDT
    [18] IERS Bulletins. Retrieved June 19, 2020, from
    https://www.iers.org/IERS/EN/Publications/Bulletins/bulletins.html
    [19] Transformations between Time Systems. Retrieved June 20, 2020, from https://gssc.esa.int/navipedia/index.php/Transformations_between_Time_Systems
    [20] Dormand, J., & Prince, P., “A family of embedded Runge-Kutta formulae”, Journal of Computational and Applied Mathematics, Vol 6(1), pp. 19–26, 1980.
    [21] Jones, B.A., “Efficient Models for the Evaluation and Estimation of the Gravity Field”, University of Colorado, doctoral dissertation, 2010.
    [22] MATLAB script for 3D visualizing geodata on a rotating globe. Retrieved June 9, 2020, from https://www.asu.cas.cz/~bezdek/vyzkum/rotating_3d_globe/index.php.
    [23] Losch, M., & Seufer, V, “How to Compute Geoid Undulations (Geoid Height Relative to a Given Reference Ellipsoid) from Spherical Harmonic Coefficients for Satellite Altimetry Applications”, 2003.
    [24] Vallado, D. A., & Finkleman, D, “A critical assessment of satellite drag and atmospheric density modeling”, Acta Astronautica, Vol 95, pp. 141–165, 2014.
    [25] Hedin, A. E., “Extension of the MSIS Thermosphere Model into the middle and lower atmosphere”, Journal of Geophysical Research: Space Physics, Vol 96(A2), pp. 1159–1172, 1991.
    [26] Natural Resources Canada, Earth Sciences Sector, & Geological Survey of Canada, Geomagnetic Laboratory. Solar radio flux - Archive of measurements. Retrieved June 9, 2020, from https://spaceweather.gc.ca/solarflux/sx-5-en.php.
    [27] National Geophysical Data Center. (2010, April 5). Retrieved June 9, 2020, from ftp://ftp.ngdc.noaa.gov/STP/GEOMAGNETIC_DATA/INDICES/KP_AP/.
    [28] 國家實驗研究院國家太空中心福爾摩沙衛星五號衛星特性. Retrieved June 9, 2020, from http://www.nspo.narl.org.tw/tw2015/projects/FORMOSAT-5/satellite.html.
    [29] Bloise, N., Capello, E., Dentis, M., & Punta, E., “Obstacle Avoidance with Potential Field Applied to a Rendezvous Maneuver”, Applied Sciences, Vol 7(10), p. 1042, 2017.
    [30] Cook, G., “Satellite drag coefficients”, Planetary and Space Science, Vol 13(10), pp. 929–946, 1965.
    [31] Vallado, D. A., Equations of Motion., Fundamentals of Astrodynamics and Applications., Third Edition, pp. 1–40, Microcosm, Hawthorne, CA., 2007.
    [32] Montenbruck O. and B. Gill., Atmospheric Drag., Satellite orbits, models, methods, application., pp. 83-102, Springer-Verlag, Berlin., 2000.
    [33] R. Schamberg., A new analytic representaticn of surface interaction with
    hypothermal free molecule ow with application to neutral-particle drag estimates of satellites., Technical Report RM-2313., RAND Research Mem-orandum., 1959.

    QR CODE
    :::