跳到主要內容

簡易檢索 / 詳目顯示

研究生: 黃前銘
Chien-Ming Huang
論文名稱: 四百萬畫素DLP大口徑投影機鏡頭設計與溫度、電視畸變、橫向色差、相對照度之探討
指導教授: 孫文信
Wen-Shing Sun
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 122
中文關鍵詞: DLP投影機鏡頭設計DMD偏移消熱差設計水平直線鑑別率垂直直線鑑別率橫向色差鑑別率
外文關鍵詞: DLP projector lens design, DMD offset, Athermalization design, Horizontal resolving power, Vertical resolving power, Lateral color resolving power
相關次數: 點閱:14下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文為四百萬畫素DLP投影機在環境溫度10℃至80℃對熱的分析與校正之鏡頭設計,由十四片玻璃鏡片所組成,鏡頭焦距為24.06 mm,F/#為1.71,投影距離7.2 m,投影屏幕大小為200吋,並對電視畸變、橫向色差、相對照度之分析與探討。
    本論文選用TI DLP660TE 0.66" DMD,考慮垂直方向DMD偏移 100%,其最大像高為11.038 mm。在設計的消熱差過程中先以室溫(22℃)的光學系統設計為開始,選用適當鏡片材料並改變鏡筒材料由金屬材料鋁改為塑膠材料PMMA,來達到消熱差的效果。在環境溫度10℃至80℃之鏡頭成像品質,其MTF(93 lp/mm)最大值可達到0.613;橫向色差絕對值最大值為1.390 μm,最小值為0.782 μm;光學畸變最大值為0.14670%;電視畸變最大值為0.06768%;相對照度達93.95%。
    本論文所設計的光學系統為前投影系統,是由人眼觀測螢幕影像,而人眼鑑別率至少為1',則人眼是否能夠判讀螢幕畫面的水平、垂直直線扭曲量、橫向色差,其鑑別率必須小於1'。本鏡頭設計在人眼至螢幕最小距離為250 mm(明視距離),則水平直線鑑別率最大值為0.09';垂直直線鑑別率最大值為0.07';橫向色差鑑別率最大值為0.019'。


    This paper is a lens design for analyzing and correcting the heat of a four-megapixel DLP projector at an ambient temperature of 10℃ to 80℃. It is composed of 14 glass lenses with a focal length of 24.06 mm, F/# is 1.71, projection distance of 7.2 meters, projection screen size of 200 inches, and TV distortion, lateral chromatic aberration, relative illumination for the analysis and discussion.
    In this paper, we use TI DLP660TE 0.66" DMD. Considering the vertical DMD offset 100%, the maximum image height is 11.038 mm. In the process of designing the athermalization, the design of the optical system at room temperature (22℃) is used as the starting point. The proper lens material is selected and the material of the lens barrel is changed from the metal material aluminum to the plastic material PMMA to achieve the effect of eliminating heat difference. The image quality of the lens at the ambient temperature of 10℃ to 80℃ has a maximum MTF (93lp/mm) is 0.613; the maximum absolute value of the transverse chromatic aberration is 1.390 μm, and the minimum value is 0.782 μm; The maximum optical distortion is 0.14670%; the maximum TV distortion is 0.06768%; the relative is 93.95%.
    This optical system is base on a front projection system, the human eye observes screen image, and the human eye resolving power at least 1', whether the human eye can interpret the horizontal, vertical linear distortion and lateral color of the screen, the resolving power must be less than 1'. The minimum distance between the human eye and the screen is 250 mm (bright distance), the maximum horizontal resolving power is 0.089523'; the maximum vertical resolving power is 0.070716'; the maximum lateral color resolving power is 0.019114'.

    摘要 I ABSTRACT II 目錄 III 圖目錄 VII 表目錄 XII 第一章 緒論 1 1-1研究動機 1 1-2文獻探討 2 1-3論文架構 9 第二章 設計理論 11 2-1攝氏10℃至80℃對鏡頭設計影響 11 2-1-1玻璃折射率與波長關係 11 2-1-2玻璃折射率與溫度關係 12 2-1-3溫度變化與熱膨脹係數對鏡片參數的影響 13 2-1-4屈光度變化與dn/dt 關係 15 2-2 DMD規格 18 2-3 DMD垂直方向偏移(y offset) 19 2-4 光學畸變定義 21 2-5 電視畸變定義 22 2-6 螢幕畫面視場設定 23 2-7 水平直線扭曲量定義與計算 25 2-7-1 水平直線扭曲量定義 25 2-7-2 理想像高與其垂直高度夾角定義 26 2-7-3水平直線扭曲量計算 27 2-8 垂直直線扭曲量定義與計算 29 2-8-1 垂直直線扭曲量定義 29 2-8-2 理想像高與其水平高度夾角定義 30 2-8-3 垂直直線扭曲量計算 31 2-9 螢幕畫面水平直線與垂直直線之鑑別率定義 32 2-10 橫向色差定義 33 2-11 橫向色差鑑別率()定義 34 第三章 鏡頭設計過程 35 3-1 投影鏡頭設計規格及成像品質目標 35 3-2 設計起始值選取 37 3-3 室溫(22℃)之鏡頭優化設計 39 3-4 球面玻璃材料與非球面玻璃材料選取 40 3-5 室溫(22℃)之鏡頭設計結果 41 3-6 溫度範圍選取 43 3-7環境溫度10℃至80℃之參數值設定 43 第四章 環境溫度10℃至80℃消熱差之鏡頭設計結果 51 4-1 改變鏡筒材料之消熱差補償 51 4-2 設計目標與設計結果分析比較 52 4-2-1 鏡組資料 52 4-2-2 設計結果之成像品質分析 55 A. 環境溫度10℃至80℃之MTF 55 B. 環境溫度10℃至80℃之橫向色差 64 C. 環境溫度10℃至80℃之光學畸變 69 D. 環境溫度10℃至80℃之相對照度 73 E. 環境溫度10℃至80℃之│SMTF-TMTF│ 79 F. 溫度10℃至80℃之水平直線鑑別率與垂直直線鑑別率計算結果 81 G. 溫度10℃至80℃之橫向色差鑑別率計算結果 86 4-2公差分析 88 第五章 結論與未來展望 92 5-1 結論 92 5-2 未來展望 93 參考資料 94 附錄一 97

    [1] Andrew Michael, “The ultimate guide to 4K Ultra HD,”
    http://www.ultrahdtv.net/
    [2] Frost, Jacqueline B. Cinematography for Directors: A Guide for Creative Collaboration. Michael Wiese Productions.
    [3] Sony Unveils New 4k Digital Cinema Projector. Press Release. ProjectorCentral.
    [4] Darren Quick. Sony releases world's first 4K home theater projector. Gizmag.
    [5] D. S. Grey, “Athermalization of Optical Systems,” J. Opt. Soc. Am, 38, 542-546 (1948).
    [6] M. J. Duggin, “Discrimination of targets from background of similar temperature, using two-channel data in the 3.5-4.1-m and 11–12-m regions,” Appl. Opt. 25(7), 1186–1195 (1986).
    [7] M. H. Horman, “Temperature analysis from multispectral infrared data,” Appl. Opt. 15(9), 2099–2104 (1976).
    [8] T. H. Jamieson, “Ultrawide waveband optics,” Opt. Eng. 23(2), 111–116 (1984).
    [9] M. Roberts and P. J. Rogers, “Wide waveband infrared optics,” Proc. SPIE 1013, 84–91 (1988).
    [10] Y. Tamagawa and T. Tajime, “Dual-band optical systems with a projective athermal chart: design,” Appl. Opt. 36(1), 297–301 (1997).
    [11] J. L. Rayces, L. Lebich, “Thermal compensation of infrared achromatic objectives with three optical materials,” Proc. SPIE 1354, 752-759 (1990).
    [12] P. J. Rogers, “Athermalized FLIR optics,” Proc. SPIE 1354, 742-751 (1990).
    [13] H. S. Yang et al., “Three-shell-based lens barrel for the effective athermalization of an IR optical system,” Appl. Opt. 50(33), 6206-6213 (2011).
    [14] Y. Tamagawa, S. Wakabayashi, T. Tajime, and T. Hashimoto, “Multilens system design with an athermal chart,” Appl. Opt. 33, 8009-8013 (1994).
    [15] Schott, “TIE-29: Refractive index and dispersion,” in Proc. Schott Technical information (Schott Inc., Germany, 2015).
    [16] Schott, “TIE-19: Temperature coefficient of the refractive index,” in Proc. Schott Technical information (Schott Inc., Germany, July 2008).
    [17] Y. Bai, T. W. Xing, W. M. Lin and W. M. Xie, “Athermalization of middle infrared optical system,” J. Appl. Opt. 33(1),181-185 (2012).
    [18] Y. J. Kim, Y. S. Kim, and S. C. Park, “Simple graphical selection of optical materials for an athermal and achromatic design using equivalent Abbe number and thermal glass constant,” Journal of the optical society of Korea 19, 182-187 (2015).
    [19] TEXAS INSTRUMENT, “DLP 660TE 0.66 4K UHD DMD,”
    http://www.ti.com/lit/ds/symlink/dlp660te.pdf
    [20]BenQ, “DLP XPR技術,”
    https://www.benq.com/zh-tw/index.html
    [21] TEXAS INSTRUMENT, “DLP Technology,”
    http://www.ti.com.cn/cn/lit/an/zhca626/zhca626.pdf
    [22]高鳳遙,「超大廣角鏡頭在溫度-20℃至60℃對熱的分析與校正之鏡頭設計」,國立中央大學光電所,碩士論文,民國一零五年
    [23]徐英舜,「汽車超大廣角於溫度-30℃至70℃消熱差與高相對照度之鏡頭設計」,國立中央大學光電所,碩士論文,民國一零六年

    QR CODE
    :::