| 研究生: |
吳庭昀 Ting-Yun Wu |
|---|---|
| 論文名稱: |
多重層柱黏土複合材料之製備及其吸持特性研究 nonc |
| 指導教授: | 李俊福 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程研究所 Graduate Institute of Environmental Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 127 |
| 中文關鍵詞: | 三團聯共聚物 、改質黏土 、RAFT聚合法 、層柱 、BTEX 、Cr6-、Cu2+、Pb2+ |
| 外文關鍵詞: | triblock copolymer, modified clay, RAFT polymerization, layer column, BTEX, Cr6-、Cu2+、Pb2+ |
| 相關次數: | 點閱:20 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著科技發展,聚合物奈米材料之相關研究備受關注,其中團聯共聚物(Block copolymer)之研究備受矚目。因此本研究重點在於自行合成三團聯共聚物,再以長碳鏈段作為層柱撐開層狀黏土,將三團聯共聚物嵌入至已撐開之黏土層隙間,形成黏土複合材料,並針對嵌入共聚物進行特性鑑定,經製備完成之團聯共聚物黏土複合材料,在進行對非離子(NOCs)有機污染物及無機重金屬吸持特性作探討。
三團聯共聚物因組成單體之帶電性、親疏水性、團聯段大小及順序造成豐富之溶液性質。本研究使用可逆加成-裂解鏈轉移聚合法(RAFT)自行合成三團聯共聚物,其中團聯共聚物之團聯段包括:甲基丙烯酸甲酯(M)、甲基丙烯酸二甲胺乙酯(D)、甲基丙烯酸(A) 。此類三團聯共聚物在酸性條件下,甲基丙烯酸二甲胺乙酯(D)之胺基上會帶正電而可當陽離子型界面活性劑使用,在鹼性條件下由於甲基丙烯酸(A)會解離而帶負電而可當陰離子型界面活性劑使用,甲基丙烯酸甲酯(M)不帶電荷但具較強之疏水性。在未改質蒙特石中,經由純化,並以兩種不同層柱作為改質,乾燥後再將三團聯共聚物添加進改質土壤中,最後乾燥得到樣品。
經實驗後證實本研究合成之黏土複合材料具有吸持(附)有機污染物(BTEX)、無機重金屬(Cu2+、Pb2+)能力。根據陰離子污染物(Cr6-)吸附結果雖效果未有文獻值佳,但仍具有一定吸附量,而有機污染物以改質土壤CS211有最佳吸持效果,苯、甲苯、乙苯、對二甲苯logkom 值分別為2.37、2.83、3.24、3.25。 陽離子金屬吸附皆較文獻值佳,銅離子最佳吸附量為45.2 mg/g;鉛離子最佳吸附量為80 mg/g,因此確定已成功改質具有多重功能之改質黏土,也針對完成有機污染物吸持實驗之改質土壤進行測定,確認改質後土壤崩解情況以及是否具備吸附無機污染物能力,研究結果來說,改質黏土中以CS112較其他改質黏土對污染物具有較大的吸持(附)能力。
關鍵字:三團聯共聚物、改質黏土、RAFT聚合法、層柱、BTEX、Cr6-、Cu2+、Pb2+
Since science and technology develop fast, a number of investigators pay attention to polymer nanomaterials. Among them, the study regarding to block copolymer has become a critical issue. In this study, we focused to synthesize a triblock copolymer, and then the synthesized chemicals with a long carbon were embedded in the interlayer of clay (montmorillonite) to increase basal spacing. The produced clay composite was characterized using various instruments. The prepared composite materials were applied to uptake non-ionic organic pollutants (NOCs) and inorganic metal ions.
Electronic properties, hydrophilicities, block copolymer size and synthesis sequence for the monomer to form triblock copolymer could affect the properties of composite materials. In this study, a method of “Reversible Addition-Fragmentation Chain Transfer (RAFT)” was used to prepare the triblock copolymer. The block copolymers consist of methyl methacrylate (M), dimethylaminoethyl methacrylate (D), methacrylic acid (A). The amino-group in D possesses the positive charge, which can be regarded as a cationic surfactant. Hydrogen ion in A could dissociate to form anionic surfactant under the pH >7. M possesses the relatively higher hydrophobicity that dissociates difficultly. In the montmorillonite, it was modified with two different layers. After drying, the triblock copolymer was added to the modified soil. Then, the sample was dried to obtained a composite-clay.
The result indicated that the clay composites synthesized in this study can uptake organic pollutants, (benzene, toluene, ethylbenzene and xylene, BTEX), and metal ions (Cu2+, Pb2+and Cr6+). Although the adsorptive amount of Cr6+ is lower than that in literature, the adsorbent can effectively remove Cr6+ from aqueous solution. For BTEX, the CS211modified clay can generate the best adsorption effect. Moreover, logkom values for benzene, toluene, ethylbenzene, and xylene, were 2.37, 2.83, 3.24, and 3.25, respectively. As for the cationic meatal ions, the adsorptive amounts are higher than those in literature. The maximum adsorption capacities for Cu2+ and Pb2+ are 45.2 and 80 mg/g, respectively. The result demonstrated the clay had been modified successfully. The adsorption experiment for the organic compounds on the modified clay examined the level of the soil disintegration after the modification and whether the produced adsorbents uptake inorganic pollutants or not. According to the research results, CS112 modified clay was regarded as the best adsorbent to remove the test pollutants.
Key words:triblock copolymer, modified clay, RAFT polymerization, layer column, BTEX, Cr6-, Cu2+, Pb2+
1. Boyd,S.A.; Lee,J.F.; Mortland,M.“Attenuating Organic Contaminant Mobility by Soil Modification” Nature, 333, 345-347,1988
2. Lochner, Horst; Breker, Johannes,Agrarwirtschaft - Grundstufe Landwirt. Bornheim, Deutschland: BLV Buchverlag,2011
3. 于幼華、溫清光,環境科學大辭典,國立編譯館,2002
4. 陳炳濤,土壤地理與生物地理,華東師範大學出版社,1991
5. 郭魁士,土壤學,八版,台北:中國書局,1997
6. 黃裕銘,土壤簡介,第一篇土壤
7. Mary H. Stevenson,The nutritional value of cassava root meal in laying hen diets,1984
8. 賴芷伶,混摻團聯式共聚高分子在液態中藉由氫鍵形成之自組裝行為研究,2006
9. 石健忠、戴子安,科學發展,476期p.23,2012
10. Karine Khougaz, Irina Astafieva, and Adi Eisenberg ,Micellization in Block Polyelectrolyte Solutions. 3. Static Light Scattering Characterization,1995
11. Fiona L. Baines, Steven P. Armes, Norman C. Billingham, and Zdenek Tuzar ,Micellization of Poly(2-(dimethylamino)ethyl methacrylate-block-methyl methacrylate) Copolymers in Aqueous Solution, Macromolecules 29,1996
12. YanLiu , JianboLi, JieRen, ChaoLin, JunzhaoLeng,Preparation and in vitro pH-responsive drug release of amphiphilic dendritic star-block copolymer complex micelles, Materials Letters127,8-11,2014
13. Qingqing Bian, Yan Xiao, Chen Zhou, Meidong Lang ,Synthesis, self-assembly, and pH-responsive behavior of (photo-crosslinked) star amphiphilic triblock copolymer,Journal of Colloid and Interface Science 392, 141-150,2013
14. Paul J. Flory, Principles of Polymer Chemistry,Cornell University Press, p.39,1953
15. Stevens, M. P. (1999). Polymer Chemistry,New York : Oxford University Press,pp. 17–18, 189–229
16. Henry Hsieh、Roderic P. Quirk,Anionic Polymerization: Principles and practical applications,1996
17. Braunecker, Wade A.、Matyjaszewski, Krzysztof,Controlled/living radical polymerization: Features, developments, and perspectives,Progress in Polymer Science,2007
18. Dotsevi Y. Sogah, Walter R. Hertler, Owen W. Webster, and Gordon M. Cohen,Group Transfer Polymerization. Polymerization of Acrylic Monomers,Macromolecules 20, 1987
19. Matyjaszewski K., Xia, J., Chem. Rev., 101, 2921,2001
20. J. Chiefari, Y. K. Chong, F. Ercole, J. Krstina, J. Jefery, T. P. T. Le, R. T. A. Mayadunne, G.F. Meijs, C. L. Moad, G. Moad, E. Rizzardo, S. H,Thong, Macromolecules,1998.
21. A. Goto, K. Sato, Y. Tsujii, T. Fukuda, G. Moad, E. Rizzardo and S. H,Thang,Macromolecules,2001
22. Perrine Bordes, Eric Pollet, Luc Averous,Nano-biocomposites: Biodegradable polyester/nanoclay systems,Progress in Polymer Science 34, 125–155,2009
23. 何如珍,雙團聯共聚物之合成與層狀黏土複合材料之製備及其吸持特性之研究,2017
24. Wang, X.S.; Qin,Y., Equilibrium sorption isotherms for of Cu2+on rice bran,Process Biochemistry, 40, pp.677-680,2005
25. Gulnaziya Issabayeva; Mohamed Kheireddine Aroua,Removal of lead from aqueous solutions on palm shell activated carbon,Bioresource Technology, 97, pp.2350-2355,2006
26. Abollion,O.; Aceto,M.; Malandrino,M.; Sarzanini,C.; Mentasti,E.,,Adsorption of Heavy Metals on Na-montmorillonite. Effect of pH and Organic Substances.,Water Research, 37, 1619-1627,2003
27. 陳誼庭,雙重功能層柱改質黏土之製備與吸持特性之研究,2015
28. 施雅婷,具特定官能基之改質土壤對污染物吸持作用之研究,2016
29. Quintelas C1, Fernandes B, Castro J, Figueiredo H, Tavares T,Biosorption of Cr(VI) by three different bacterial species supported on granular activated carbon: a comparative study. ,2008
30. lM.K.RaiG.ShahiV.MeenaR.MeenaS.ChakrabortyR.S.SinghB.N.Rai,Removal of hexavalent chromium Cr (VI) using activated carbon prepared from mango kernel activated with H3PO4,2016