跳到主要內容

簡易檢索 / 詳目顯示

研究生: 周漢祥
Han-Siang Chou
論文名稱: 圓柱堆變形破壞之輸送帶實驗分析
The Phenomenal Analysis of Deformation with Assemble Cylinders in the Conveyor Belt Experiment
指導教授: 周憲德
Hsien-Ter Chou
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
畢業學年度: 93
語文別: 中文
論文頁數: 80
中文關鍵詞: 輸送帶圓柱變形破壞角速度孔隙率粒子影像分析
外文關鍵詞: cylinder, deformation, angular velocity, porosity, particle image algorithm, conveyor belt
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以迴轉式輸送帶渠槽帶動圓柱顆粒來進行實驗,以模擬斜坡上崩塌土體轉化為土石流之過程。
    本實驗主要探討的是微觀的顆粒旋轉變形破壞現象。藉由兩種輸送帶速度(4.17cm/s、12.34cm/s)以及兩種渠槽角度(0∘、20∘)搭配成四種實驗條件來進行,利用DV拍攝實驗過程並加以分析。分析方法則是以粒子影像分析法為基礎,建立一套量測圓柱顆粒質心位移、角速度以及孔隙率之處理程式,以分析圓柱堆破壞時、破壞中及破壞後之運動機制。此外,分析底層圓柱顆粒之運動歷程,並以快速傅利葉轉換(FFT)得到其尖峰頻率。


    This study performs experimental work with cylinders on the conveyor belt to simulate the process of landslide failure of granular particles. The experimental setup is designed to examine both the microscopic rotational deformation and macroscopic patterns.
    The particles image algorithm is used to study the deformation on the bottom of the assemble cylinders by shearing force. The change of porosity before and after the deformation is analyzed at different velocities (i.e. 4.17cm/s, 12.34cm/s), and slopes (i.e. 0°, 20°). We establish a method to measure the deformation, angular velocity and porosity of particles. Furthermore, we analyze the mechanism to find the peak frequency by FFT.

    第一章 序論 1 1.1 研究動機 1 1.2 研究目的 3 1.3 論文架構 3 第二章 文獻回顧 4 2.1 土石流相關理論 4 2.2 顆粒流相關實驗 5 2.2.1 滾筒(rotating cylinder)試驗 5 2.2.2 剪力槽(shear cell)試驗 6 2.2.3 振動床(vibrating bed)試驗 6 2.2.4 輸送帶(conveyor belt)試驗 7 2.2.5 傾斜式瀉槽(inclined chute)試驗 8 2.3 圓柱運動與顆粒摩擦相關理論 8 2.4 分析方法理論介紹 10 第三章 理論分析 11 3.1 自由圓柱之運動分析 11 3.1.1平面上之圓柱運動分析 11 3.1.2 斜面上之圓柱運動分析 12 3.2 受推擠圓柱之運動分析 15 3.2.1單一圓柱受木塊推移之運動分析 15 3.2.2 單一圓柱兩側受木塊限制之運動分析 18 3.2.3 多顆圓柱陣列兩側受木塊限制之運動分析 19 3.3 乾顆粒流之運動分析 21 第四章 研究方法 26 4.1 實驗設備 26 4.2 實驗步驟與方法 29 4.3 影像處理與分析 33 4.4 實驗誤差分析 42 第五章 結果分析與討論 43 5.1 整體現象分析 43 5.1.1 時間關係 43 5.1.2 輸送帶速度與渠槽角度之影響 45 5.1.3 破壞臨界時刻分析 46 5.1.4 流動方向與轉動分析 48 5.1.5 孔隙率分析 58 5.2 局部現象分析 64 5.2.1 區域分析(剪力與重力) 64 5.2.2 輸送帶震動與頻率分析 67 5.2.3 架橋效應 70 第六章 結論與建議 71 6.1 結論 71 6.2 建議 72 參考文獻 73 附錄A 77 附錄B 79

    1.吳京霖,「砂粒受水平振動行為之研究」,碩士論文,國立中央大學土木工程研究所,中壢 (2001) 。
    2.彭子軒,「慢顆粒流之輸送帶實驗與影像分析」,碩士論文,國立中央大學土木工程研究所,中壢 (2002) 。
    3.周東寬,「二維斜坡顆粒流之輸送帶實驗與分析」,碩士論文,國立中央大學土木工程研究所,中壢 (2003) 。
    4.張耀文,「圓柱堆變形破壞與流體化現象之輸送帶實驗分析」,碩士論文,國立中央大學土木工程研究所,中壢 (2004) 。
    5.周憲德,「邊坡破壞與崩塌轉化成土石流之研究(一)」,行政院國家科學委員會專題研究計畫成果報告,第1-30頁 (2002) 。
    6.周憲德,「邊坡破壞與崩塌轉化成土石流之研究(二)」,行政院國家科學委員會專題研究計畫成果報告,第1-38頁(2003) 。
    7.周憲德、張藝耀,「斜坡堆積圓球及圓柱受水平振動時之傾斜角分析」,中國土木水利工程學刊,第十六卷,第一期,第145-154頁 (2004) 。
    8.Capart, H., “Dam-break induced geomorphic flows and the transition from solid- to fluid-like behavior across evolving interfaces,” PhD thesis, UCL, Belgium (2000).
    9.Capart, H., Young, D.L., and Zech, Y., “ Voronoï imaging methods for the measurement of granular flows , ” Exp. Fluids, Vol.32, pp. 121-135 (2002).
    10.Dury, C.M., and Ristow, G.H., “Boundary effects on the angle of repose in rotating cylinders,” Physical Review E, Vol. 57, No.4, pp.4491-4496 (1998).
    11.Denlinger, R.P., and Iverson, R.M., “Flow of variably fluidized granular masses across three-dimension terrain: 2.Numerical predictions and experimental tests,” Journal of Geophysical. Research,” Vol. 106, No.B1, pp.553-566 (2001).
    12.Gray, J.M.N.T., M. Wieland, and K. Hutter, “Gravity driven free surface flow of granular avalanches over complex basal topography,” Proc. R. Soc. London, Ser. A, 455, pp.1841-1874 (1999).
    13.Hanes, M.D., and Inman, D.L., “Experimental Evaluation of a Dynamic Yield Criterion for Granular Fluid Flows,” Journal of Geophysical. Research, Vol. 90, No.B5, pp.3670-3674 (1985).
    14.Iverson, R.M., Reid, M.E., and LaHusen, R.G., “Debris-flow mobilization from landslides,” Annual Review of Earth and Planetary Sciences 25, pp.85-138 (1997).
    15.Iverson, R.M., “The physics of debris flows,” Reviews of Geophysics, Vol. 35, No. 3, pp.245-296 (1997a).
    16.Iverson, R.M., and Vallance, J.W., “New view of granular mass flows,” Journal of Geology, Vol. 29, No.2, pp.115-118 (2001).
    17.Iverson, R.M., and Denlinger, R.P., “Flow of variably fluidized granular masses across three-dimension terrain: 1.Coulomb mixture theory,” Journal of Geophysical. Research, Vol. 106, No.B1, pp.537-552 (2001).
    18.Radjai, F. “Friction-induced self-organization of a one-dimensional array of particles,” Physics Review E, Vol. 51, No.6, pp.6177-6187 (1995).
    19.Radjai, F., Evesque, P., Bideau, D., and Roux, S., “Stick-slip dynamics of a one-dimensional array of particles,” Physical Review E, Vol. 52, No.25, pp.5555-5564 (1995).
    20.Savage, S. B. and Hutter, K., “The motion of a finite mass of granular material down a rough incline,” Journal of Fluid Mechanics, Vol.199, pp.177-215 (1989).
    21.Savage, S. B. and Hutter, K., “The dynamics of avalanches of granular materials from initiation to runout, part I, Analysis,” Acta Mech., 86, pp.201-223 (1991).
    22.Spinewine, B., Capart, H., Larcher, M., Zech, Y., “Three-dimensional Voronoï imaging methods for the measurement of near-wall particulate flows,” Experiments in Fluids , Vol. 34, pp.227-241 (2003).
    23.Takahashi, T.,“ Initiation and flow of various types of debris-flow,” Proceeding of the Second International Conference on Debris-Flow Hazards Mitigation ,Taiwan, 2000, pp.15-25.

    QR CODE
    :::