跳到主要內容

簡易檢索 / 詳目顯示

研究生: 蔡宗豪
Zong-Hao Cai
論文名稱: 以核心模糊最近特徵線轉換法做人臉辨識
Kernel Fuzzy Nearest Feature Line Embedding for Face Recognition
指導教授: 陳映濃
Ying-Nong Chen
范國清
Kuo-Chin Fan
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 資訊工程學系在職專班
Executive Master of Computer Science & Information Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 49
中文關鍵詞: 最近特徵線轉換法核心模糊人臉辨識
外文關鍵詞: Nearest Feature Line Embedding, Kernel, Fuzzy, Face Recognition
相關次數: 點閱:19下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文主要是以最近特徵線轉換(Nearest Feature Line Embedding,
    NFLE) 為基礎,將Fuzzy NFLE (FNFLE)、Kernel NFLE (KNFLE)
    、以及在本研究中所提出的Kernel Fuzzy NFLE (KFNFLE),三
    種方法進行效能比較和結果分析,進而了解KNFLE、FNFLE 以及
    KFNFLE 應用在人臉辨識的實際結果。

    本研究的動機是認為Kernel 與Fuzzy 方法皆能強化特徵空間,因
    此在我們所提出KFNFLE 中,Kernel 與Fuzzy 方法同時被用來改善
    NFLE 的效能。首先,人臉訓練樣本先轉換至PCA 空間,接著再以
    訓練樣本去求得FNFLE、KNFLE 與KFNFLE 的轉換矩陣,最後再
    將訓練樣本與測試樣本透過轉換矩陣投影至新的特徵空間中,並以最
    近鄰居法進行比對。

    實驗以CMU 人臉資料庫與自製人臉資料庫進行,實驗結果顯示,
    當樣本數增加時,我們所提出的KFNFLE 的效果如預期優於其它演
    算法。


    In this thesis, three algorithms based on Nearest Feature Line Embedding (NFLE) including Fuzzy NFLE (FNFLE), Kernel NFLE (KNFLE),and the proposed Kernel Fuzzy NFLE (KFNFLE) methods are implemented to demonstrate their effectiveness applying on face recognition.

    The motivation of this study relies main by on the fact that both Kernel method and Fuzzy model can enhance the transformed feature space. Therefore, Kernel method and Fuzzy model are both considered in the proposed KFNFLE to further improve the performance of original NFLE. Firstly, the training faces are transformed by applying PCA method. Then, the transformed matrixes based on FNFLE, KNFLE,
    and KFNFLE are obtained, respectively. Next, the prototype and testing samples are projected onto the feature space via the obtained transformed matrixes. Last, nearest neighbor method is applied for matching.

    In the experiments, the CMU face database, and our real-case face database are utilized to evaluate the performance of the proposed KFNFLE method. Experimental results demonstrate that the performance of the proposed KFNFLE is superior to FNFLE, KNFLE, and original NFLE when the sample size increases.

    中文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . i 英文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii 謝誌. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii 目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv 圖目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi 表目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii 一、緒論. . . . . . . . . . . . . . . . . . . . . . . . 1 1-1 背景與目的. . . . . . . . . . . . . . . . . . . . 2 1-2 方法概述. . . . . . . . . . . . . . . . . . . . . . 3 1-3 論文結構. . . . . . . . . . . . . . . . . . . . . . 4 二、相關研究. . . . . . . . . . . . . . . . . . . . . . 5 2-1 自適應增強(Adaptive Boosting, AdaBoost) 簡介5 2-2 主成份分析(Principal Component Analysis, PCA) 簡介. . . . . . . . . . . . . . . . . . . . . . . . 6 2-3 最近特徵線轉換(Nearest Feature Line Embedding, NFLE) 簡介. . . . . . . . . . . . . . . . . 8 2-4 模糊理論(Fuzzy Method) 簡介. . . . . . . . . 10 2-5 核函式(Kernel Function) 簡介. . . . . . . . . . 11 三、以核心模糊最近特徵線轉換法做人臉辨識. . . . 14 3-1 人臉偵測. . . . . . . . . . . . . . . . . . . . . . 16 3-2 Kernel Function . . . . . . . . . . . . . . . . . . 16 3-3 Fuzzy NFLE . . . . . . . . . . . . . . . . . . . . 18 四、實驗結果. . . . . . . . . . . . . . . . . . . . . . 21 4-1 實驗環境與資料. . . . . . . . . . . . . . . . . . 21 4-2 實驗數據與結果. . . . . . . . . . . . . . . . . . 25 4-2-1 CMU 資料庫. . . . . . . . . . . . . . . . . . . 25 iv 4-2-2 Real-Case 資料庫. . . . . . . . . . . . . . . . . 28 4-3 實驗結果分析. . . . . . . . . . . . . . . . . . . 33 五、結論與未來展望. . . . . . . . . . . . . . . . . . 35 參考文獻. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

    [1] Window Home Security. Home security systems for a peaceful life. 取自http://www.windowhomesecurity.com/?p=30, 2013.
    [2] Bu Linda. House alarm systems tips & guide. 取自http:
    //homesecuritysystemsreview-s.com/house-alarm-systems,
    2011.
    [3] Yoav Freund and Robert E. Schapire. ”a decision-theoretic generalization
    of on-line learning and an application to boosting”. In
    European Conference on Computational Learning Theory, pages 23–37, 1995.
    [4] H. C. Wang and L. M. Zhang. ”a novel fast training algorithm for
    adaboost”. Journal of Fudan University (Natural Science), 43(1):27–33, 2004.
    [5] 鄭文昌、詹定懋.「多種特徵抽取方法比較與結合之adaboost 行人
    偵測」. Proceedings of the Conference on the Information Education and Technological Applications, 2011.
    [6] K. Pearson. ”on lines and planes of closest fit to systems of points in space”. Philosophical Magazine, 2(6):559–572, 1901.
    [7] S. Z. Li. ”nearest feature line”. Scholarpedia, 3(3):4357, 1999.
    [8] Li. Zhao, Wei. Qi, S. Z. Li, S. Q. Yang, and H. J. Zhang. ”contentbased retrieval of video shot using the improved nearest feature line method”. Chinese Journal of Software, 13(4):586–590, April 2002.
    [9] Y. N. Chen. ”Face Recognition Using Nearest Feature Space Embedding”.PhD thesis, National Central University, 2011.
    [10] L. A. Zadeh. ”fuzzy sets”. Information And Control, 8:338–353, 1965.
    [11] M. Aizermann, E. Braverman, and L. Ronzonoer. ”theoretical foundations of the potential function method in pattern recognition
    learning”. Automatika i Telemekhanika, 25:147–169, 1964.
    [12] Bernhard E. Boser, Isabelle M. Guyon, and Vladimir N. Vapnik. ”a training algorithm for optimal margin classifiers”. In Proceedings of the 5th Annual ACM Workshop on Computational Learning Theory, pages 144–152. ACM Press, 1992.
    [13] J. Mercer. ”functions of positive and negative type, and their connection with the theory of integral equations”. Philosophical Transactions of the Royal Society, London, 209:415–446, 1909.
    [14] César R. Souza. Kernel functions for machine learning
    applications. 取自http://crsouza.blogspot.com/2010/03/
    kernel-functions-for-machine-learning.html, 2010.
    [15] Davis Nello Cristianini University of California. Kernel methods for general pattern analysis. 取自http://www.kernel-methods.net/tutorials/KMtalk.pdf.
    [16] 陳士杰. 支持向量機基礎. 取自http://sjchen.im.nuu.edu.tw/
    MachineLearning/final/CLS_SVM.pdf, 2005.
    [17] Adam Jówik. ”a learning scheme for a fuzzy k-nn rule”. Pattern Recogn. Lett., 1(5-6):287–289, July 1983.
    [18] J. M. Keller, M. R. Gray, and Jr. ”a fuzzy k-nearest neighbor algorithm”. IEEE Transactions on Systems, Man, and Cybernetics, 15:580–585, 1985.
    [19] CMU Face Group. Frontal and profile face databases. 取自http://vasc.ri.cmu.edu/idb/html/face/facial_expression, 2009.

    QR CODE
    :::