跳到主要內容

簡易檢索 / 詳目顯示

研究生: 瓦宇力
Wahyu Tri Budianto
論文名稱: An Observation on 7-distance Set in Euclidean Plane
指導教授: 俞韋亘
Wei-Hsuan Yu
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系
Department of Mathematics
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 32
中文關鍵詞: 平面7-距離集直徑圖凸多邊形
外文關鍵詞: planar 7-distance set, diameter graph, convex polygon
相關次數: 點閱:14下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在離散幾何中有個有趣的問題是尋找最大k-距離集。 即使看似簡單的最大平面7-距離集也還是未知的。

    此篇論文我們給出部分結論。 Erdös and Fishburn [1] 給出了16個點的平面7距離集, 但不知道是否是最大的。 我們將17個點的平面7-距離集以X_D的基數做分類, 這個數會介於2到17之間。 我們照著 Wei [2] 的思路研究17個點的平面7-距離集。

    我們證明9-13以外是不可能的, 但9-13的部分只能給出部分結論。


    It is known that obtaining maximum k-distance sets has been an interesting problem in discrete geometry. Even a seemingly not-difficult problem like the maximum cardinality of 7-distance set in R^2 is yet to be found.
    In this thesis we provide some partial results for this problem. Erdös and Fishburn [1] showed the 16-point 7-distance sets, but did not prove that 16 is the maximum. We observe whether there is any 17-point 7-distance set in R^2 based on the cardinality of X_D, where 2≤|X_D |≤17. We follow the method used in Wei [2] for this observation.
    We can only provide partial results for 9≤|X_D |≤13, but for the other parts, we prove that there is no 17-point 7-distance set with that value of |X_D |.

    Introduction 1 Theory Overview 4 Analysis 7 Conclusion 20 Bibliography 22

    [1] E. Bannai, E. Bannai, and D. Stanton. “An Upper Bound for the Cardinality of an s-distance Subset in Real Euclidean Space, II”. In: Combinatorica 3 (1983), pp. 147–152.
    [2] O. R. Musin and H. Nozaki. “Bounds on Three- and Higher-distance Sets”. In: European J. Combin. 32 (2011), pp. 1182–1190.
    [3] P. Erdos and P. Fishburn. “Maximum Planar Sets that Determines k Distances”. In: Discrete Mathematics 160 (1996), pp. 115–125.
    [4] X. Wei. “A Proof of Erdös-Fishburn’s Conjecture for g(6) = 13”. In: The Electronic Journal of Combinatorics 19(4) (2012).
    [5] M. Shinohara. “Uniqueness of Maximum Planar Five-distance Sets”. In: Discrete Mathematics 308 (2008), pp. 3048–3055.
    [6] X. Wei. “Classification of Eleven-point Five-distance Sets in the Plane”. In: Ars Combinatoria 102 (2011), pp. 505–515.
    [7] E. Altman. “On a Problem of P. Erdös”. In: American Mathematical Monthly 70 (1963), pp. 148–157.

    QR CODE
    :::