跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳勃璁
Bo-Cong Chen
論文名稱: 通過微小擾動回饋方法抑制空間上的交替現象
Suppression of spatial alternans by small feedback perturbation method
指導教授: 黎璧賢
Pik-Yin Lai
陳志強
C.K Chan
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 104
中文關鍵詞: 心臟交替脈空間交替非線性控制動態控制
外文關鍵詞: Cardiac alternans, Spatial alternans, Nonlinear control, Dynamic control
相關次數: 點閱:25下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 一般認為在心臟動力學行為由規律演變至混沌的過程中會有週期倍增的現象, 稱為倍週期(Period-doubling)。而交替震盪的現象(Alternans) 正是倍週期的開始,因此成為了預測心律不整的重要指標。我們研究了Logistic Coupled Map Lattice 空間上的交替現象,並使用r+r-回饋控制方法進行局部區域控制。我們發現處於過渡狀態交替現象的區域更容易被抑制,也適合做為完全抑制交替現象的起點。最後我們提出了動態控制策略,以控制關鍵區域達到完全抑制空間上的交替現象,大約只需要10% 的控制比例。


    It is generally believed that there is a phenomenon of period-doubling when cardiac rhythm undergoes a transition from periodic to chaotic dynamics. Cardiac alternans, which is a period-2 oscillation, has become an important indicator of arrhythmia prediction. In this thesis, we study the spatial alternans in the Logistic Coupled Map Lattice and aim at suppressing local alternans by using the r+r- feedback control method. We find that the transition state of the alternans is easier to be suppressed, and it can serve as the starting point for suppressing whole spatial alternans. Finally, we propose a dynamic control strategy to achieve the suppression spatial of alternans by using only about 10% of the control ratio.

    摘要 (p.xi) Abstract (p.xiii) 誌謝 (p.xv) 目錄 (p.xvii) 使用符號與定義 (p.xxvii) 1 緒論 (p.1) 1.1 心臟交替脈 (Cardiac Alternans) (p.2) 1.1.1 倍週期現象 (p.4) 1.2 非線性動力學分析 (p.6) 1.2.1 固定點(Fixed Point) (p.6) 1.2.2 分岔(Bifurcation) (p.8) 1.2.3 吸引子(Attractor) (p.10) 2 模擬與研究方法 (p.13) 2.1 Logistic Map (p.13) 2.2 Coupled Map Lattice (p.15) 2.2.1 Spatiotemporal Pattern (p.16) 2.3 Coupled Map Network (p.18) 2.4 回饋控制方法 (p.18) 2.4.1 r+ r- (p.18) 2.4.2 r+ r0 r- (p.19) 2.4.3 在CMN中的控制 (p.20) 2.5 動態選擇控制的節點 (p.20) 2.6 序參數(Order Parameter) (p.22) 2.6.1 系統變異度 (p.22) 2.6.2 相位同步率 (p.24) 3 研究結果 (p.27) 3.1 控制對基本單元動力學的影響 (p.27) 3.1.1 吸引子差異 (p.29) 3.1.2 分岔圖比較 (p.30) 3.1.3 不同的r0判定範圍 (p.33) 3.2 固定控制的節點 (p.34) 3.3 動態選擇控制的節點 (p.44) 3.3.1 控制策略1:限制數量 (p.46) 3.3.2 控制策略2:限制範圍 (p.51) 4 總結 (p.57) 4.1 不需連續施加控制 (p.57) 4.2 抑制的起點 (p.57) 4.3 定點控制的侷限 (p.58) 4.4 動態控制成效 (p.58) 4.5 未來展望 (p.60) 參考文獻 (p.61) A 其他評估函數 (p.65) A.1 Laplacian (p.65) A.2 Delta x (p.67) B 程式碼 (p.69) B.1 Script範例 (p.69) B.2 netdev.m (p.70) B.3 netgenerat.m (p.74) B.4 dist.m (p.76)

    [1] A. Karma, “Physics of cardiac arrhythmogenesis,” Annual Review of Condensed Matter Physics, vol. 4, no. 1, pp. 313–337, 2013. doi: 10 . 1146 / annurev - conmatphys-020911-125112. [Online]. Available: https://doi.org/10. 1146/annurev-conmatphys-020911-125112.
    [2] J. G. Restrepo and A. Karma, “Spatiotemporal intracellular calcium dynamics during cardiac alternans,” Chaos: An Interdisciplinary Journal of Nonlinear Science, vol. 19, no. 3, p. 037 115, Sep. 1, 2009, issn: 1054-1500. doi: 10.1063/1.3207835. [Online]. Available: http://aip.scitation.org/doi/10.1063/1.3207835.
    [3] E. Alvarez-Lacalle, B. Echebarria, J. Spalding, and Y. Shiferaw, “Calcium alternans is due to an order-disorder phase transition in cardiac cells,” Physical Review Letters, vol. 114, no. 10, p. 108 101, Mar. 12, 2015. doi: 10.1103/PhysRevLett.114.108101. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevLett.114.108101.
    [4] A. Petrie and X. Zhao, “Estimating eigenvalues of dynamical systems from time series with applications to predicting cardiac alternans,” Proc. R. Soc. A, rspa20120098, Jul. 4, 2012, issn: 1364-5021, 1471-2946. doi: 10.1098/rspa.2012.0098. [Online]. Available: http://rspa.royalsocietypublishing.org/content/early/2012/07/03/rspa.2012.0098 (visited on 06/22/2017).
    [5] Z. Qu and J. N. Weiss, “Dynamics and cardiac arrhythmias,” Journal of Cardiovascular Electrophysiology, vol. 17, no. 9, pp. 1042–1049, Sep. 1, 2006, issn: 1540-8167. doi: 10.1111/j.1540- 8167.2006.00567.x. [Online]. Available: http : / / onlinelibrary . wiley . com / doi / 10 . 1111 / j . 1540 - 8167.2006.00567.x/abstract.
    [6] S. S. Kalb, H. M. Dobrovolny, E. G. Tolkacheva, S. F. Idriss, W. Krassowska, and D. J. Gauthier, “The restitution portrait:” Journal of Cardiovascular Electrophysiology, vol. 15, no. 6, pp. 698–709, Jun. 1, 2004, issn: 1540-8167. doi: 10.1046/j.1540-8167.2004.03550.x. [Online]. Available: http://onlinelibrary.wiley.com/doi/10.1046/j.1540-8167.2004.03550.x/abstract.
    [7] Z. Qu, Y. Xie, A. Garfinkel, and J. N. Weiss, “T-wave alternans and arrhythmogenesis in cardiac diseases,” Frontiers in Physiology, vol. 1, Nov. 29, 2010, issn: 1664-042X. doi: 10.3389/fphys.2010.00154. [Online]. Available: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3028203/.
    [8] S. H. Strogatz, Nonlinear dynamics and chaos: With applications to physics, biology, chemistry, and engineering, 1 edition. Cambridge, Mass: Westview Press, Jan. 19, 2001, 512 pp., isbn: 978-0-7382-0453-6.
    [9] K. Kaneko and T. Yanagita, “Coupled maps,” Scholarpedia, vol. 9, no. 5, p. 4085, May 12, 2014, issn: 1941-6016. doi: 10.4249/scholarpedia.4085. [Online]. Available: http : / / www . scholarpedia . org / article / Coupled _ maps (visited on 06/25/2017).
    [10] S. Sridhar, D.-M. Le, Y.-C. Mi, S. Sinha, P.-Y. Lai, and C. K. Chan, “Suppression of cardiac alternans by alternating-period-feedback stimulations,” Physical Review E, vol. 87, no. 4, p. 042 712, Apr. 15, 2013. doi: 10.1103/PhysRevE.87.042712. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevE.87.042712.
    [11] S.-N. Liang, D.-M. Le, P.-Y. Lai, and C. K. Chan, “Ionic characteristics in cardiac alternans suppression usingT ± ￿ feedback control,” EPL (Europhysics Letters),
    vol. 115, no. 4, p. 48 001, 2016, issn: 0295-5075. doi: 10.1209/0295- 5075/115/48001. [Online]. Available: http://stacks.iop.org/0295- 5075/115/i=4/a=48001.
    [12] D.-M. Le, Y. T. Lin, Y. H. Yang, P.-Y. Lai, and C. K. Chan, “Cardiac alternans reduction by chaotic attractors inT ± ￿ feedback control,” EPL (Europhysics Letters), vol. 117, no. 5, p. 50 001, 2017, issn: 0295-5075. doi: 10.1209/0295-5075/117/50001. [Online]. Available: http://stacks.iop.org/0295-5075/117/i=5/a=50001.
    [13] J. M. Pastore, S. D. Girouard, K. R. Laurita, F. G. Akar, and D. S. Rosenbaum, “Mechanism linking t-wave alternans to the genesis of cardiac fibrillation,” Circulation, vol. 99, no. 10, pp. 1385–1394, Mar. 16, 1999, issn: 0009-7322, 1524-4539. doi: 10.1161/01.CIR.99.10.1385. [Online]. Available: http://circ.ahajournals.org/content/99/10/1385 (visited on 06/22/2017).
    [14] Z. Qu, A. Garfinkel, P.-S. Chen, and J. N. Weiss, “Mechanisms of discordant alternans and induction of reentry in simulated cardiac tissue,” Circulation, vol. 102, no. 14, pp. 1664–1670, Oct. 3, 2000, issn: 0009-7322, 1524-4539. doi: 10.1161/01.CIR.102.14.1664. [Online]. Available: http://circ.ahajournals.org/content/102/14/1664 (visited on 06/28/2017).
    [15] M. A. Watanabe, F. H. Fenton, S. J. Evans, H. M. Hastings, and A. Karma, “Mechanisms for discordant alternans,” Journal of Cardiovascular Electrophysiology, vol. 12, no. 2, pp. 196–206, Feb. 1, 2001, issn: 1540-8167. doi: 10.1046/j.1540-8167.2001.00196.x. [Online]. Available: http://onlinelibrary.wiley.com/doi/10.1046/j.1540-8167.2001.00196.x/abstract.
    [16] D. J. Watts and S. H. Strogatz, “Collective dynamics of ‘small-world’networks,” Nature, vol. 393, no. 6684, pp. 440–442, Jun. 4, 1998, issn: 0028-0836. doi: 10.1038 / 30918. [Online]. Available: https : / / www . nature . com / nature / journal/v393/n6684/full/393440a0.html (visited on 06/27/2017).
    [17] A.-L. Barabási and R. Albert, “Emergence of scaling in random networks,” Science, vol. 286, no. 5439, pp. 509–512, Oct. 15, 1999, issn: 0036-8075, 1095-9203. doi: 10.1126/science.286.5439.509. [Online]. Available: http://science.sciencemag.org/content/286/5439/509 (visited on 06/27/2017).
    [18] A. L. Lloyd and R. M. May, “How viruses spread among computers and people,” Science, vol. 292, no. 5520, pp. 1316–1317, May 18, 2001, issn: 0036-8075, 1095-9203. doi: 10 . 1126 / science . 1061076. [Online]. Available: http : / / science . sciencemag . org / content / 292 / 5520 / 1316 (visited on 06/27/2017).
    [19] R. Pastor-Satorras and A. Vespignani, “Epidemic spreading in scale-free networks,” Physical Review Letters, vol. 86, no. 14, pp. 3200–3203, Apr. 2, 2001. doi: 10.1103/PhysRevLett.86.3200. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevLett.86.3200.

    QR CODE
    :::