跳到主要內容

簡易檢索 / 詳目顯示

研究生: 李柏樂
Po-Le Lee
論文名稱: Thermodynamics of Scalar Field in Schwarzschild Black Holes
指導教授: 陳江梅
Chiang-Mei Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 29
中文關鍵詞: 純量場彎曲時空配分函數熱力學交互作用
外文關鍵詞: scalar field, curved spacetime, partition function, Thermodynamical, back-reaction
相關次數: 點閱:21下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們討論了純量場在彎曲時空下的熱力學行為,而在計算配分函數原先使用路徑積分的方法只能給出平空間下的配分函數,在彎曲時空下的配分函數使用路經積分 的方法會發散,所以我們參考了 t’Hooft 的作法,也就是藉由數系統可以有多少個態,我們也可以看到在這個方法下計算平空間的配分函數與路徑積分的做法是相同的結果,而我們也得到了在史瓦西時空下的純量場配分函數,而再由配分函數我們 得到了其他熱力學量,自由能, 內能, 熵, 能量漲落。而後我們想嘗試得到當純量場 與時空是有交互作用下的行為,而我們也是採用 t’Hooft 的作法計算共型場論與時空交互作用最後發現到場的所有的熱力學量只是稍微比沒有交互作用的時空還要大。


    We study the thermodynamical behavior of scalar field in the curved spacetimes backgroundoftheSchwarzschildblackhole. Thedirectcalculationofthepathintegral will lead a divergent result. So we following the approach proposed by t’ Hooft to compute the partition function. In addition, we also calculate the energy fluctuation. For taking into account the back-reaction, we consider a conformal scalar field in whichwecangettheleadingorderapproximationoftheback-reactiontospacetimes. By using the t’ Hooft method we calculate the partition function of this conformal scalar field.

    1 Introduction 1 2 Scalar field in Schwarzschild spacetime 3 2.1 Partition function of scalar field. . . . . . . . . . .3 2.2 Thermodynamical quantities: Free energy, Internal energy, Entropy. . . . . . . . . . . . . . . . . . . . . .6 2.3 Thermodynamical behaviors . . . . . . . . . . . . . . .7 3 Conformal scalar field with back-reaction 11 3.1 Conformal scalar field . . . . . . . . . . . . . . . 11 3.2 Solution with back-reaction . . . . . . . . . . . . . 12 4 Thermodynamics of scalar field with back-reaction 15 4.1 Thermodynamics of conformal scalar field . . .. . . . 15 4.2 Numerical results . . . . . . . . . . . . . . . . . . 17 5 Conclusion 20 Bibliography 21 A Scalar field in Minkowski spacetime 22

    [1] G. W. Gibbons and S. W. Hawking, “Action Integrals and Partition Functions in Quantum Gravity,” Phys. Rev. D 15, 2752 (1977).
    [2] G. ’t Hooft, “On the Quantum Structure of a Black Hole,” Nucl. Phys. B 256, 727 (1985).
    [3]A.J.Accioly,A.N.VaidyaandM.M.Som,“StaticConformallyInvariantScalar Field,” J. Math. Phys. 24, 2176 (1983).
    [4] D. N. Page, “Thermal Stress Tensors in Static Einstein Spaces,” Phys. Rev. D 25, 1499 (1982).
    [5] J. W. York, Jr., “Black Hole in Thermal Equilibrium With a Scalar Field: The Back Reaction,” Phys. Rev. D 31, 775 (1985).

    QR CODE
    :::