| 研究生: |
周明澔 Ming-Hao Zhou |
|---|---|
| 論文名稱: |
表面電漿效應於紫外光發光二極體的應用 Applying Surface Plasmon Resonance to Ultraviolet LEDs |
| 指導教授: |
賴昆佑
Kun-Yu Lai |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 論文出版年: | 2023 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 41 |
| 中文關鍵詞: | 表面電漿共振增強 、紫外光發光二極體 |
| 外文關鍵詞: | SPRi, UV-LED |
| 相關次數: | 點閱:20 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
相較於可見光LEDLED,紫外光LED 因波長更短能量更強,可以殺菌,在生醫領域有很大的應用價值。但是紫外光LED 的發光效率很低,尚未完全商業化。為了提升紫外光LED 的效率,我們希望利用表面電漿效應增加LED 的量子效率。我們在藍寶石基板上成長發光波長為( 的AlGaN 量子阱(Qu antum Well, QW) QW),再用鋁作p 型電極,並分析量子阱和Al 之間的距離對發光效率及電性的影響。我們發現當量子阱和Al 之間的距離為50 nm p 型GaN 磊晶時間 5 分鐘 時,元件有較明顯的表面電漿效應,但是接觸電阻太大。如果將Al
下方的Ni 厚度從5 nm 增加到10 nm nm,可以降低接觸電阻、並維持表面電漿的效果。
Comparing to the LEDs with visible emission waveleng
th s , ultraviolet
(UV LEDs have higher photonic energy, which is promising for the
disinfection in bio chemical applications. However, UV LED is of low
quantum efficiencies, impeding its commercialization. In this study, we
aims to improve the efficiency of UV LED by surface plasmon resonance
(SPR) effect. The UV with the wavelength of 355 nm was grown on
a sapphire substrate, and aluminum ( was used as the p type electrode.
It is found that when the Al electrode and AlGaN quantum wells are
separated by the 50 nm p GaN (growth time: 5 min), the device exhibits
SPR effect but with unsatisfactory contact resistance. Increasing the nickel
(Ni) thickness under Al from 5 nm to 10 nm can reduce the contact
resistance on p GaN.
[1] https://zh.wikipedia.org/zh-tw/%E7%B4%AB%E5%A4%96%E7%BA%BFhttps://blog.ntsec.edu.tw/index.php?tid=531&id=248
[2] https://rimotec.nl/uv-led/
[3] Jana. J, Ganguly. M, & Pal. T. Enlightening surface plasmon resonance effect of metal nanoparticles for practical spectroscopic application RSC Advances, 6(89), 86174–86211 (2016)
[4] Saleem. M. F, Peng. Y, Xiao. K, Yao. H. Wang. Y, & Sun. W. Factors Affecting Surface Plasmon Coupling of Quantum Wells in Nitride-Based LEDs: A Review of the Recent Advances Nanomaterials, 11(5), 1132 (2021)
[5] Xuefeng Gu, Teng Qiu, Wenjun Zhang & Paul K Chu.Light-emitting diodes enhanced by localized surface plasmon resonance. Nanoscale Research Letters6, 10.1186/1556-276X-6-199 (2011)
[6] Na Gao, Kai Huang, Jinchai Li, Shuping Li, Xu Yang & Junyong Kang. Surface-plasmon-enhanced deep-UV light emitting diodes based on AlGaN multi-quantum wells. Scientific Reports volume 2, 816 (2012)
[75]https://w3.sipa.gov.tw/SPANEWS/newsletter/download.jsp?FileName=1567492185945.pdf
[8]https://zh.wikipedia.org/zh-tw/%E6%9C%89%E6%9C%BA%E9%87%91%E5%B1%9E%E5%8C%96%E5%AD%A6%E6%B0%94%E7%9B%B8%E6%B2%89%E7%A7%AF%E6%B3%95#
[9] https://semi.tcfst.org.tw/semi/pdf/Litho%20Technology.pdf
[10]https://www.syskey.com.tw/index_cn.php?action=product&title=%E6%84%9F%E6%87%89%E8%80%A6%E5%90%88%E9%9B%BB%E6%BC%BF%E8%9D%95%E5%88%BB
[11]https://cmnst-cfc.ncku.edu.tw/var/file/197/1197/img/137/ELIONIXEIS-700SOP.pdf
[6]https://cmnst-cfc.ncku.edu.tw/var/file/197/1197/img/137/ELIONIXEIS-700SOP.pdf
[12]
http://mems.mt.ntnu.edu.tw/document/%E8%92%B8%E9%8D%8D%E6%8A%80%E8%A1%93.pdf
[13]https://web.tnu.edu.tw/me/me-htdocs/study/proj/proj90/90-14%E7%86%B1%E8%92%B8%E9%8D%8D%E6%A9%9F%E8%88%87%E9%AB%98%E6%BA%AB%E7%88%90%E7%AE%A1.pdf
[14] Jong Won Lee, Gyeongwon Ha, Jeonghyeon Park, Hyun Gyu Song, Jae Yong Park, Jaeyong Lee, Yong-Hoon Cho, Jong-Lam Lee, Jin Kon Kim*, and Jong Kyu Kim*.AlGaN Deep-Ultraviolet Light-Emitting Diodes with Localized Surface Plasmon Resonance by a High-Density Array of 40 nm Al Nanoparticles. ACS Appl,10.1021/acsami.0c08916(2020)