跳到主要內容

簡易檢索 / 詳目顯示

研究生: 周明澔
Ming-Hao Zhou
論文名稱: 表面電漿效應於紫外光發光二極體的應用
Applying Surface Plasmon Resonance to Ultraviolet LEDs
指導教授: 賴昆佑
Kun-Yu Lai
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
論文出版年: 2023
畢業學年度: 112
語文別: 中文
論文頁數: 41
中文關鍵詞: 表面電漿共振增強紫外光發光二極體
外文關鍵詞: SPRi, UV-LED
相關次數: 點閱:20下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 相較於可見光LEDLED,紫外光LED 因波長更短能量更強,可以殺菌,在生醫領域有很大的應用價值。但是紫外光LED 的發光效率很低,尚未完全商業化。為了提升紫外光LED 的效率,我們希望利用表面電漿效應增加LED 的量子效率。我們在藍寶石基板上成長發光波長為( 的AlGaN 量子阱(Qu antum Well, QW) QW),再用鋁作p 型電極,並分析量子阱和Al 之間的距離對發光效率及電性的影響。我們發現當量子阱和Al 之間的距離為50 nm p 型GaN 磊晶時間 5 分鐘 時,元件有較明顯的表面電漿效應,但是接觸電阻太大。如果將Al
    下方的Ni 厚度從5 nm 增加到10 nm nm,可以降低接觸電阻、並維持表面電漿的效果。


    Comparing to the LEDs with visible emission waveleng
    th s , ultraviolet
    (UV LEDs have higher photonic energy, which is promising for the
    disinfection in bio chemical applications. However, UV LED is of low
    quantum efficiencies, impeding its commercialization. In this study, we
    aims to improve the efficiency of UV LED by surface plasmon resonance
    (SPR) effect. The UV with the wavelength of 355 nm was grown on
    a sapphire substrate, and aluminum ( was used as the p type electrode.
    It is found that when the Al electrode and AlGaN quantum wells are
    separated by the 50 nm p GaN (growth time: 5 min), the device exhibits
    SPR effect but with unsatisfactory contact resistance. Increasing the nickel
    (Ni) thickness under Al from 5 nm to 10 nm can reduce the contact
    resistance on p GaN.

    第1章、 緒論 .............................................1 紫外光LED的發展現況 .......................................1 表面電漿效應的原理及應用 ...................................2 紫外光LED的技術瓶頸 .......................................5 第2章、 製作原理以及儀器 ...................................7 2.1結構 ..................................................7 2.2儀器 ..................................................7 2-2-1 MOCVD(有機化學氣象沉積) .............................7 2-2-2 Mask Aligner (MA6) ................................9 2-2-3 ICP/RIE System(感應耦合式蝕刻機) .................. 10 2-2-4 E-gun/thermal Evaporator (電子束/熱阻式蒸鍍機) .... 11 2-2-5 爐管 ..............................................12 2.3實驗製程 .............................................13 2-3-1 樣品清洗..........................................13 2-3-2 定義所需蝕刻區域 ..................................14 2-3-3 蝕刻至N-type結構 ..................................14 2-3-4 定義所需P型電極 ...................................15 2-3-5 蒸鍍所需P型電極 ...................................16 2-3-6 定義所需N型電極 ...................................17 2-3-7 蒸鍍所需N型電極 ..................................18 第3章、 結果與討論 .....................................20 3.1改變參雜濃度對PL光譜的影響 .........................20 3.2改變p-GaN層厚度對PL光譜的影響........................22 3.3改變p-GaN層厚度的光電特性 ...........................27 3.3.1改變p-GaN層厚度的IV曲線 .......................27 3.3.2改變p-GaN層厚度的EL光譜 ..........................29 3.4改變電極(鎳)厚度的的光電特性 ........................32 3.4.1改變電極(鎳)厚度的IV曲線 ........................ 33 3.4.2改變電極(鎳)厚度的EL光譜 ..........................36 第44章、未來與展望......................................39 參考文獻................................................40

    [1] https://zh.wikipedia.org/zh-tw/%E7%B4%AB%E5%A4%96%E7%BA%BFhttps://blog.ntsec.edu.tw/index.php?tid=531&id=248
    [2] https://rimotec.nl/uv-led/
    [3] Jana. J, Ganguly. M, & Pal. T. Enlightening surface plasmon resonance effect of metal nanoparticles for practical spectroscopic application RSC Advances, 6(89), 86174–86211 (2016)
    [4] Saleem. M. F, Peng. Y, Xiao. K, Yao. H. Wang. Y, & Sun. W. Factors Affecting Surface Plasmon Coupling of Quantum Wells in Nitride-Based LEDs: A Review of the Recent Advances Nanomaterials, 11(5), 1132 (2021)
    [5] Xuefeng Gu, Teng Qiu, Wenjun Zhang & Paul K Chu.Light-emitting diodes enhanced by localized surface plasmon resonance. Nanoscale Research Letters6, 10.1186/1556-276X-6-199 (2011)
    [6] Na Gao, Kai Huang, Jinchai Li, Shuping Li, Xu Yang & Junyong Kang. Surface-plasmon-enhanced deep-UV light emitting diodes based on AlGaN multi-quantum wells. Scientific Reports volume 2, 816 (2012)
    [75]https://w3.sipa.gov.tw/SPANEWS/newsletter/download.jsp?FileName=1567492185945.pdf
    [8]https://zh.wikipedia.org/zh-tw/%E6%9C%89%E6%9C%BA%E9%87%91%E5%B1%9E%E5%8C%96%E5%AD%A6%E6%B0%94%E7%9B%B8%E6%B2%89%E7%A7%AF%E6%B3%95#
    [9] https://semi.tcfst.org.tw/semi/pdf/Litho%20Technology.pdf
    [10]https://www.syskey.com.tw/index_cn.php?action=product&title=%E6%84%9F%E6%87%89%E8%80%A6%E5%90%88%E9%9B%BB%E6%BC%BF%E8%9D%95%E5%88%BB
    [11]https://cmnst-cfc.ncku.edu.tw/var/file/197/1197/img/137/ELIONIXEIS-700SOP.pdf
    [6]https://cmnst-cfc.ncku.edu.tw/var/file/197/1197/img/137/ELIONIXEIS-700SOP.pdf
    [12]
    http://mems.mt.ntnu.edu.tw/document/%E8%92%B8%E9%8D%8D%E6%8A%80%E8%A1%93.pdf
    [13]https://web.tnu.edu.tw/me/me-htdocs/study/proj/proj90/90-14%E7%86%B1%E8%92%B8%E9%8D%8D%E6%A9%9F%E8%88%87%E9%AB%98%E6%BA%AB%E7%88%90%E7%AE%A1.pdf
    [14] Jong Won Lee, Gyeongwon Ha, Jeonghyeon Park, Hyun Gyu Song, Jae Yong Park, Jaeyong Lee, Yong-Hoon Cho, Jong-Lam Lee, Jin Kon Kim*, and Jong Kyu Kim*.AlGaN Deep-Ultraviolet Light-Emitting Diodes with Localized Surface Plasmon Resonance by a High-Density Array of 40 nm Al Nanoparticles. ACS Appl,10.1021/acsami.0c08916(2020)

    QR CODE
    :::