| 研究生: |
曾悅綺 Yueh-Chi Tseng |
|---|---|
| 論文名稱: |
由具有二嵌段的接枝共聚物形成的非典型單層和多層囊泡: 結構和滲透性 Atypical monolayer and multilayer vesicles formed by graft copolymers with diblock side-chains: structure and permeability |
| 指導教授: |
曹恆光
Heng-Kwong Tsao |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程與材料工程學系 Department of Chemical & Materials Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 英文 |
| 論文頁數: | 47 |
| 中文關鍵詞: | 接枝共聚物 、囊泡 、多層 |
| 外文關鍵詞: | graft copolymer, vesicle, multilayer |
| 相關次數: | 點閱:9 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在選擇性溶劑中具有二嵌段側鏈Am(-graft-B3Ay)n的接枝共聚物在先前已經被研究探討,可自組裝成囊泡,但預計其結構與脂質雙層有明顯不同。令人驚訝的是,在相同的共聚物濃度下,囊泡中交替的疏水性A-嵌段和親水性B-嵌段層的數量可以從單層到多層(例如七層)變化。共聚物層的面積密度在整個膜上是不均勻的。不同層之間的這種結構差異歸因於相鄰環境和層的曲率。由於不尋常的聚合物構形,聚合物體的微觀結構比脂質體複雜得多。事實上,共聚物可以貢獻一個或兩個親水層,它可以參與多達三個疏水層。還研究了主鏈長度(m)和側鏈長度(y)以及滲透動力學的影響。發現疏水層的厚度隨著側鏈長度的增加而增加,但對主鏈長度不敏感。雖然滲透時間隨著平面膜的層數而增長,但由於拉普拉斯壓力,導致球形囊泡的行為相反。
Graft copolymers with diblock side-chains Am(-graft-B3Ay)n in selective solvent have been reported to self-assemble into vesicles, but the structure is expected to differ distinctly from lipid bilayers. Surprisingly, the number of the alternating hydrophobic A-block and hydrophilic B-block layers in the vesicle can vary from monolayer to multilayer such as hepta-layer, subject to the same copolymer concentration. The area density of the copolymer layer is not uniform across the membrane. This structural difference among different layers is attributed to the neighboring environment and the curvature of the layer. Because of unusual polymer conformations, the microscopic structure of polymersome is much more intricate than that of liposome. In fact, a copolymer can contribute to a single or two hydrophilic layers and it can participate up to three hydrophobic layers. The influences of the backbone length (m) and side-chain length (y) and the permeation dynamics are also studied. The thickness of hydrophobic layers is found to rise with increasing the side-chain length but not sensitive to the backbone length. Although the permeation time grows with the layer number for planar membranes, the opposite behavior is observed for spherical vesicles owing to Laplace pressure.
[1] Lin, C.-M., et al., Size-dependent properties of small unilamellar vesicles formed by model lipids. Langmuir, 2012. 28(1): p. 689-700.
[2] van der Meel, R., et al., Extracellular vesicles as drug delivery systems: lessons from the liposome field. Journal of controlled release, 2014. 195: p. 72-85.
[3] Sani, M.-A. and F. Separovic, How membrane-active peptides get into lipid membranes. Accounts of chemical research, 2016. 49(6): p. 1130-1138.
[4] Lian, T. and R.J. Ho, Trends and developments in liposome drug delivery systems. Journal of pharmaceutical sciences, 2001. 90(6): p. 667-680.
[5] Discher, D.E. and A. Eisenberg, Polymer vesicles. Science, 2002. 297(5583): p. 967-973.
[6] Li, M.-H. and P. Keller, Stimuli-responsive polymer vesicles. Soft Matter, 2009. 5(5): p. 927-937.
[7] Yang, Y.-L., et al., Dynamics of bridge–loop transformation in a membrane with mixed monolayer/bilayer structures. Physical Chemistry Chemical Physics, 2018. 20(9): p. 6582-6590.
[8] Le Meins, J.-F., O. Sandre, and S. Lecommandoux, Recent trends in the tuning of polymersomes’ membrane properties. The European Physical Journal E, 2011. 34(2): p. 1-17.
[9] Anajafi, T. and S. Mallik, Polymersome-based drug-delivery strategies for cancer therapeutics. Therapeutic delivery, 2015. 6(4): p. 521-534.
[10] Jiang, Y., et al., Effect of polydispersity on the formation of vesicles from amphiphilic diblock copolymers. Macromolecules, 2005. 38(15): p. 6710-6717.
[11] Blanazs, A., et al., Mechanistic insights for block copolymer morphologies: how do worms form vesicles? Journal of the American Chemical Society, 2011. 133(41): p. 16581-16587.
[12] Li, X., et al., Aggregates in solution of binary mixtures of amphiphilic diblock copolymers with different chain length. The Journal of Physical Chemistry B, 2006. 110(5): p. 2024-2030.
[13] Kong, W., et al., Complex micelles from self-assembly of ABA triblock copolymers in B-selective solvents. Langmuir, 2010. 26(6): p. 4226-4232.
[14] Goers, R., et al., Optimized reconstitution of membrane proteins into synthetic membranes. Communications chemistry, 2018. 1(1): p. 1-10.
[15] Matsen, M. and M. Schick, Lamellar phase of a symmetric triblock copolymer. Macromolecules, 1994. 27(1): p. 187-192.
[16] Takano, A., et al., Effect of loop/bridge conformation ratio on elastic properties of the sphere-forming ABA triblock copolymers: Preparation of samples and determination of loop/bridge ratio. Macromolecules, 2005. 38(23): p. 9718-9723.
[17] Chang, H.-Y., et al., Floating and Diving Loops of ABA Triblock Copolymers in Lipid Bilayers and Stability Enhancement for Asymmetric Membranes. Biomacromolecules, 2020. 22(2): p. 494-503.
[18] Yang, Y.-L., Y.-J. Sheng, and H.-K. Tsao, Bilayered membranes of Janus dendrimers with hybrid hydrogenated and fluorinated dendrons: Microstructures and coassembly with lipids. Physical Chemistry Chemical Physics, 2019. 21(28): p. 15400-15407.
[19] Yang, Y.-L., Y.-J. Sheng, and H.-K. Tsao, Branching pattern effect and co-assembly with lipids of amphiphilic Janus dendrimersomes. Physical Chemistry Chemical Physics, 2018. 20(43): p. 27305-27313.
[20] Naolou, T., et al., Synthesis and characterization of graft copolymers able to form polymersomes and worm-like aggregates. Soft Matter, 2013. 9(43): p. 10364-10372.
[21] Wang, Y., et al., Protein‐Resistant Biodegradable Amphiphilic Graft Copolymer Vesicles as Protein Carriers. Macromolecular bioscience, 2015. 15(9): p. 1304-1313.
[22] Peng, D., et al., Synthesis and characterization of amphiphilic graft copolymers with hydrophilic poly (acrylic acid) backbone and hydrophobic poly (methyl methacrylate) side chains. Polymer, 2007. 48(18): p. 5250-5258.
[23] Wang, L., T. Jiang, and J. Lin, Self-assembly of graft copolymers in backbone-selective solvents: a route toward stable hierarchical vesicles. RSC advances, 2013. 3(42): p. 19481-19491.
[24] Chang, H.-Y., et al., Structural characteristics and fusion pathways of onion-like multilayered polymersome formed by amphiphilic comb-like graft copolymers. Macromolecules, 2013. 46(14): p. 5644-5656.
[25] Wang, Y., et al., Compact vesicles self-assembled from binary graft copolymers with high hydrophilic fraction for potential drug/protein delivery. Acs Macro Letters, 2017. 6(11): p. 1186-1190.
[26] Kang, S.W., et al., pH-triggered unimer/vesicle-transformable and biodegradable polymersomes based on PEG-b-PCL–grafted poly (β-amino ester) for anti-cancer drug delivery. Polymer, 2013. 54(1): p. 102-110.
[27] Nguyen, H.N., M. Ezzat, and C.-J. Huang, Lysolipid-Inspired Amphiphilic Polymer Nanostructures: Implications for Drug Delivery. ACS Applied Nano Materials, 2022.
[28] Milicic, A., et al., Small cationic DDA: TDB liposomes as protein vaccine adjuvants obviate the need for TLR agonists in inducing cellular and humoral responses. PloS one, 2012. 7(3): p. e34255.
[29] Chinnagounder Periyasamy, P., et al., Nanomaterials for the local and targeted delivery of osteoarthritis drugs. Journal of nanomaterials, 2012. 2012.
[30] Chang, H.-Y., et al., Multilayered polymersome formed by amphiphilic asymmetric macromolecular brushes. Macromolecules, 2012. 45(11): p. 4778-4789.
[31] Espanol, P. and P. Warren, Statistical mechanics of dissipative particle dynamics. EPL (Europhysics Letters), 1995. 30(4): p. 191.
[32] Hoogerbrugge, P. and J. Koelman, Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. EPL (Europhysics Letters), 1992. 19(3): p. 155.
[33] Chen, Y.-F., et al., Enhancing rectification of a nano-swimmer system by multi-layered asymmetric barriers. Nanoscale, 2015. 7(39): p. 16451-16459.
[34] Wu, H.-L., H.-K. Tsao, and Y.-J. Sheng, Dynamic and mechanical properties of supported lipid bilayers. The Journal of chemical physics, 2016. 144(15): p. 154904.
[35] Jakobsen, A.F., Constant-pressure and constant-surface tension simulations in dissipative particle dynamics. The Journal of chemical physics, 2005. 122(12): p. 124901.
[36] Yang, Y.-L., H.-K. Tsao, and Y.-J. Sheng, Solid-supported polymer bilayers formed by coil–coil block copolymers. Soft Matter, 2016. 12(30): p. 6442-6450.
[37] Chu, K.-C., H.-K. Tsao, and Y.-J. Sheng, Penetration dynamics through nanometer-scale hydrophilic capillaries: Beyond Washburn’s equation and extended menisci. Journal of colloid and interface science, 2019. 538: p. 340-348.
[38] Feller, S.E., et al., Constant pressure molecular dynamics simulation: The Langevin piston method. The Journal of chemical physics, 1995. 103(11): p. 4613-4621.
[39] Groot, R.D. and P.B. Warren, Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation. The Journal of chemical physics, 1997. 107(11): p. 4423-4435.
[40] Sharma, S., Molecular dynamics simulation of nanocomposites using BIOVIA materials studio, lammps and gromacs. 2019: Elsevier.