跳到主要內容

簡易檢索 / 詳目顯示

研究生: 王如觀
Ru-Guan Wang
論文名稱: 利用社交網絡分析探討行為式建築節能作法
Analysis of Occupancy-Driven Power Consumption Data in Buildings Using Social Network Analysis
指導教授: 周建成
Chien-Cheng Chou
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 105
中文關鍵詞: 社交網絡分析智慧電表大數據分析建築節能
外文關鍵詞: Social network analysis, Smart meter data analytics, Energy conservation in buildings
相關次數: 點閱:14下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 追求人們之需求,提高建築環境的舒適度和經濟使用率為當今社會之目標,也由於現今人口出生和衰老之影響,社會人口結構發生了變化,人類之用電行為也產生了改變。隨著世界持續城市化,都市人口密度逐漸增長,建築設施也大幅度之增加,近年來,節能問題於今日之碳減排趨勢中變得越來越重要,就建築物而言,以一般住宅型態與商業型態之建築物為能源消耗之主要指標,因此,本研究將基於人類用電習慣之因素,探索一般住宅類型建築物之能源消耗,憑藉所提出之加權傳播設計與屬性資料建構,搭配關鍵因子之分群規則進一步創建社交網絡分析模型,除了透明化住戶用電之使用模式,更於社群中找尋具有較高影響力之關鍵人物,進而有效傳遞節能訊息,透過資訊之交流,供其他人學習與效仿,降低民眾之用電額度,達到節能減碳之效果。


    Reducing carbon footprints in the building sector can be achieved by altering the power consumption behavior of building residents. Due to the influence of today’s declining birth rate and population aging, the structure of human society is changed, requiring the identification of key persons active in a community to persuade the others into saving electricity. This research aims at applying the technique of social network analysis (SNA) to a publicly available smart meter data set for building residents in Germany. Traditionally the head of a community can serve as the role of broadcasting energy-saving information, although its effectiveness varies with different circumstances. In the proposed SNA-based approach, the German data set is firstly examined and pre-processed, such as augmenting building occupancy data and relationships among residents. Then, different SNA indexes are explored in order to derive a generalized procedure for such identification of key persons. More sustainable societies can be established if key persons of a community can be identified and get involved by using the proposed approach. Energy-saving information specific to each type of home appliance can be broadcast effectively and efficiently, based on such identification, so that all building residents can implement the corresponding energy saving tips.

    摘 要 vi Abstract vii 誌 謝 viii 目 錄 ix 圖目錄 x 表目錄 xii 第1章 緒論 1 1-1 研究背景與動機 1 1-2 研究問題與目的 3 1-3 研究範圍與限制 4 1-4 研究流程 5 1-5 論文結構 7 第2章 文獻回顧 9 2-1 社交網絡分析 9 2-2 能源消耗與節能技術 17 2-3 反饋模型對節省能源效益之社會影響 21 2-4 文獻評析 24 第3章 社交網絡模型 26 3-1 社交網絡之加權傳播 27 3-2 加權傳播分配設計 29 3-3 屬性資料建構 35 3-4 節點衡量機制 36 3-5 關鍵因子分群規則 40 第4章 針對德國南部住宅用戶之電力消耗負載進行探討 43 4-1 德國南部住宅建築物之電器耗電情況 43 4-2 整體系統應用介面 48 4-3 分析住宅用戶電力消耗模式 54 4-4 聚類分析 71 第5章 結論與建議 82 5-1 結論 82 5-2 建議 83 5-3 貢獻 85 參考文獻 87

    王光旭、黃怡臻,(2018)。社區人際網絡與社區意識及參與關聯性之研究:不同營造經驗社區的比較。調查研究—方法與應用,40, 63-145。

    Azar, E. and Menassa, C.C. (2014), “Framework to Evaluate Energy-Saving Potential from Occupancy Interventions in Typical Commercial Buildings in the United States,” Journal of Computing in Civil Engineering, 28(1), 63-78.

    A.Martı́nez, Y.Dimitriadis, B.Rubia, E.Gómez, & Fuente, P. d. l. (2003), “Combining qualitative evaluation and social network analysis for the study of classroom social interactions,” Computers & Education, 41(4), 353-368.

    Bollinger, B., & Gillingham, K. (2012), “Peer Effects in the Diffusion of Solar Photovoltaic Panels,” Supplemental Materials, 31(6), 873-1025.

    Borgatti, S.P., Everett, M.G., and Freeman, L.C. (2002). Ucinet for Windows: Software for
    Social Network Analysis. Analytic Technologies, Harvard, Massachusetts, USA.

    Chen, J., Taylor, J.E., and Wei, H.H. (2012), “Modeling building occupant network energy consumption decision-making: The interplay between network structure and conservation,” Energy and Buildings, 47, 515-524.

    Costanzo, M., Archer, D., Aronson, E., and Pettigrew, T. (1986), “Energy Conservation Behavior: The Difficult Path from Information to Action,” American Psychologist, 41(5), 521-528.

    Du, F., Zhang, J., Li, H., Yan, J., Galloway, S., and Lo, K.L. (2016), “Modelling the impact of social network on energy savings,” Applied Energy, 178, 56-65.

    Ekpenyong, U.E., Zhang, J., and Xia, X. (2015), “How information propagation in social networks can improve energy savings based on time of use tariff,” Sustainable Cities and Society, 19, 26-33.

    Ekpenyong, U.E., Zhang, J., and Xia, X. (2014), “Mathematical modelling for the social impact to energy efficiency savings,” Energy and Buildings, 84, 344-351.

    Gillingham, K., & Bollinger, B. (2017), “Social Learning and Solar Photovoltaic Adoption: Evidence from a Field Experiment,” Unpublished mimeo.

    Giuda, G. M. D., Villa, V., & Piantanida, P. (2015), “BIM and energy efficient retrofitting in school buildings,” Energy Procedia, 78, 1045 – 1050.

    Jain, R.K., Gulbinas, R., Taylor, J.E., and Culligan, P.J. (2013), “Can social influence drive energy savings? Detecting the impact of social influence on the energy consumption behavior of networked users exposed to normative eco-feedback,” Energy and Buildings, 66, 119-127.

    Kamilaris, A., Taliadoros, G., and Pitsillides, A. (2013). Social Electricity: When Awareness
    about Electricity Becomes Social. Retrieved from ERCIM News website: https://ercim-news.ercim.eu/en93/ri/social-electricity-when-awareness-about-electricity-becomes-social

    Kwak, H., Lee, C., Park, H., & Moon, S. (2010) , “What is Twitter, a Social Network or a News Media?,” Proceedings of the 19th international conference on World wide web, 591-600. doi: 10.1145/1772690.1772751

    Laat, M. D., Lally, V., Lipponen, L., & Simons, R.-J. (2007), “Investigating patterns of interaction in networked learning and computer-supported collaborative learning: A role for Social Network Analysis,” Computer-Supported Collaborative Learning, 2(1), 87-103.

    Lisbôa, E. S., & Coutinho, C. P. (2012), “SOCIAL NETWORK ANALYSIS (SNA): A STUDY OF A SOCIAL NETWORK IN THE FORUM PROEDI,” Proceedings of the ICERI2012 conference, 5832-5838.

    Mankoff, J., Fussell, S.R., 3, Dillahunt, T., Glaves, R., Grevet, C., Johnson, M., Matthews, D., Matthews, H.S., McGuire, R., Thompson, R., Shick, A., and Setlock, L. (2010), “StepGreen.org: Increasing Energy Saving Behaviors via Social Networks,” Proceedings of the Fourth International AAAI Conference on Weblogs and Social Media, Association for the Advancement of Artificial Intelligence, May 23-26, Washington, D.C., USA.

    Menassa, C. C., Taylor, N., & Nelson, J. (2013), “A framework for automated control and commissioning of hybrid ventilation systems in complex buildings,” Automation in Construction, 30, 94–103.

    Minde, A. (2017). Household Data. Retrieved from Open Power System Data Platform
    website: https://doi.org/10.25832/household_data/2017-11-10

    Otte, E., & Rousseau, R. (2002), “Social network analysis: a powerful strategy, also for the information sciences,” Information Science, 28(6), 441-453.

    Peschiera, G. and Taylor, J.E. (2012), “The impact of peer network position on electricity consumption in building occupant networks utilizing energy feedback systems,” Energy and Buildings, 49, 584-590.

    Raca, V., & Cico, B. (2013), “Social Network Analysis, Methods and Measurements Calculations,” Proceedings of the 2013 2nd Mediterranean Conference on Embedded Computing, Budva, Montenegro. doi: 10.1109/MECO.2013.6601370

    Wellman, B., & Wethere, C. (1996), “SOCIAL NETWORK ANALYSIS OF HISTORICAL COMMUNITIES: Some Questions from the Present for the Past,” The History of the Family, 1(1), 97-121.

    QR CODE
    :::