| 研究生: |
伍金記 Chin-chi Wu |
|---|---|
| 論文名稱: |
成長於矽基板之半極化氮化鎵磊晶層特性研究 |
| 指導教授: |
綦振瀛
Jen-inn Chyi |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 101 |
| 中文關鍵詞: | 半極化氮化鎵 、矽基板 |
| 外文關鍵詞: | semiploar GaN, (001)Si |
| 相關次數: | 點閱:18 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文報告利用矽當作成長氮化鎵材料的基板,成功將量子井結構成
長於傾斜7°(001)Si 圖形化基板上,並分析其結構與光學特性。
由於氮化鎵材料與矽基板的晶格常數與熱膨脹係數差異甚大,為了避
免氮化鎵材料產生裂縫,本研究藉由低溫氮化鋁緩衝層及多孔氮化矽以釋
放應力和減少缺陷密度。
為了使氮化鎵的發光效率提高,本研究於傾斜7°(001)Si 圖形化基板上
成長半極化(1-101)氮化鎵材料,並發現所產生的缺陷位置都在相鄰的氮化
鎵區塊接合處,而在接合處以外的地方則幾乎無缺陷存在。X-ray 繞射實驗
也顯示在(1-101)氮化鎵上成長氮化銦鎵時,銦的含量會較在(0001)面少,且
成長速率較慢。很可能是因為銦含量低的關係,其表面並無V 形缺陷。另
經變溫光激螢光量測得知在(1-101)面上的氮化銦鎵量子井具較高活化能,
可能是因為載子所需跨越位障比(0001)面較高。
The main challenge for growing GaN on Si is overcome the cracking issue caused by the large mismatch in lattice constants and thermal expansion coefficients between GaN and Si. Various growth methods, such as LT-AlN interlayer, AlGaN graded layer, and in situ SiN layer, have been proposed to cope with this issue. These interlayers are usually effective in both strain reduction and dislocation blocking. Using these techniques, we are able to produce blue light-emitting diodes with a maximum output power of 1.2 mW at 80 mA. In order to improve the luminescence efficiency, growth of semi-polar (1-101) GaN on patterned 7-degree off (001) Si substrate is investigated. It is found that high quality GaN can be obtained by this method and defects are localized in the area, at which the coalescence of GaN crystal occurs. InGaN quantum wells grown on the template exhibit no V-defect. Their photoluminescence intensity is not sensitive to In content for the In content studied. They also have higher activation energy and show less localization effect.
[1] Kevin Linthicum, Thomas Gehrke, Darren Thomson, Eric Carlson, Pradeep Rajagopal, Tim Smith, Dale Batchelor, and Robert Davis, “Pendeoepitaxy of gallium nitride thin films”, Appl. Phys. Lett. 75, 196 (1999)
[2] Eun-Hyun Park, Jin Jang, Shalini Gupta, Ian Ferguson, Cheol-Hoi Kim, Soo-Kun Jeon, and Joong-Seo Park, “Air-voids embedded high efficiency InGaN-light emitting diode”, Appl. Phys. Lett. 93, 191103 (2008)
[3] Wei Chih Peng and Yew Chung Sermon Wu, “Improved luminance intensity of InGaN–GaN light-emitting diode by roughening both the p-GaN surface and the undoped-GaN surface”, Appl. Phys. Lett. 89, 041116 (2006)
[4] Akihiko Murai, Daniel B. Thompson, Hisashi Masui, Natalie Fellows, Umesh K. Mishra, Shuji Nakamura, and Steven P. DenBaars, “Hexagonal pyramid shaped light-emitting diodes based on ZnO and GaN direct wafer bonding”, Appl. Phys. Lett. 89, 171116 (2006)
[5] Jung-Tang Chu, Hung-Wen Huang, Chih-Chiang Kao, Wen-Deng Liang, Fang-I Lai, Chen-Fu Chu, Hao-Chung Kuo, and Shing-Chung Wang, “Fabrication of Large-Area GaN-Based Light-Emitting Diodes on Cu Substrate”, Jpn. J. Appl. Phys. 44, 2509 (2005)
[6] C E Lee, Y C Lee, H C Kuo, M R Tsai, T C Lu, and S CWang, “High brightness GaN-based flip-chip light-emitting diodes by adopting geometric sapphire shaping structure”, Semicond. Sci. Technol. 23, 025015 (2008)
[7] G.M. Wu, Z.J. Cai, J.C. Wang, and T.E. Nee, “Design and simulation in GaN based light emitting diodes using focused ion beam generated photonic crystals”, Surf. Coat. Technol. 203, 2674 (2009)
[8] J. Dorsaz, J.-F. Carlin, C. M. Zellweger, S. Gradecak, and M. Ilegems, “InGaN/GaN resonant-cavity LED including an AlInN/GaN Bragg mirror”, Phys. Stat. Sol. (a) 201, 2675 (2004)
[9] Hyunsoo Kim, Kyoung-Kook Kim, Kwang-Ki Choi, Hyungkun Kim, June-O Song, Jaehee Cho, Kwang Hyeon Baik, Cheolsoo Sone, Yongjo Park, and Tae-Yeon Seong, “Design of high-efficiency GaN-based light emitting diodes with vertical injection geometry”, Appl. Phys. Lett. 91, 023510 (2007)
[10] Yoshio Honda, Norifumi Kameshiro, Masahito Yamaguchi, and Nobuhiko Sawaki, “Growth of (1-101) GaN on a 7-degree off-oriented (001)Si substrate by selective MOVPE”, J. Cryst. Growth 242, 82 (2002)
[11] Baoshun Zhang, Hu Liang, Yong Wang, Zhihong Feng, Kar Wei Ng, and Kei May Lau, “High-performance III-nitride blue LEDs grown and fabricated on patterned Si substrates”, J. Cryst. Growth 298, 725 (2007)
[12] Shigeyasu Tanaka, Yoshio Honda, Nobuhiko Sawaki, and Michio Hibino, “Structural characterization of GaN laterally overgrown on a (111)Si substrate”, Appl. Phys. Lett. 79, 955 (2001)
[13] A. Strittmatter, S. Rodt, L. Reißmann, D. Bimberg, H. Schröder, E. Obermeier, T. Riemann, J. Christen, and A. Krost, “Maskless epitaxial lateral overgrowth of GaN layers on structured Si(111) substrates”, Appl. Phys. Lett. 78, 727 (2001)
[14] K.Y. Zang, Y.D. Wang, L.S. Wang, S. Tripathy, S.J. Chua, and C.V. Thompson, “Nanoheteroepitaxy of GaN on a nanopore array of Si(111) surface”, Thin Solid Films 515, 4505 (2007)
[15] Guan-Ting Chen, Jen-Inn Chyi, Chia-Hua Chan, Chia-Hung Hou, Chii-Chang Chen, and Mao-Nan Chang, “Crack-free GaN grown on AlGaN/(111)Si micropillar array fabricated by polystyrene microsphere lithography”, Appl. Phys. Lett. 91, 261910 (2007)
[16] H. K. Cho, J. Y. Lee, G. M. Yang, and C. S. Kim, “Formation mechanism of V defects in the InGaN/GaN multiple quantum wells grown on GaN layers with low threading dislocation density”, Appl. Phys. Lett. 79, 215 (2001)
[17] M. Feneberg, F. Lipski, R. Sauer, K. Thonke, T. Wunderer, B. Neubert, P. Brückner, and F. Scholz, “Piezoelectric fields in GaInN/GaN quantum wells on different crystal facets”, Appl. Phys. Lett. 89, 242112 (2006)
[18] Yukio Narukawa, Yoichi Kawakami, Mitsuru Funato, Shizuo Fujita, Shigeo Fujita and Shuji Nakamura, “Role of self-formed InGaN quantum dots for exciton localization in the purple laser diode emitting at 420 nm”, Appl. Phys. Lett. 70, 981 (1997)
[19] T. Wang, J. Ba, S. Sakai and J. K. Ho, “Investigation of the emission mechanism in InGaN/GaN-based light-emitting diodes”, Appl. Phys. Lett. 78, 2617 (2001)
[20] F. Schulze, A. Dadgar, J. Bläsing, and A. Krost, “Influence of buffer layers on metalorganic vapor phase epitaxy grown GaN on Si(001)”, Appl. Phys. Lett. 84, 4747 (2004)
[21] A. Krost, and A. Dadgar, “GaN-Based Devices on Si”, Phys. Stat. Sol. (a) 194, 361 (2002)
[22] A. Krost, A. Dadgar, G. Strassburger, and R. Clos, “GaN-based epitaxy on silicon: stress measurements”, Phys. Stat. Sol. (a) 200, 26 (2003)
[23] A. Krost, A. Dadgar, F. Schulze, J. Bläsing, G. Strassburger, R. Clos, A. Diez, P. Veit, T. Hempel, and J. Christen, “In situ monitoring of the stress evolution in growing group-III-nitride layers”, J. Cryst. Growth 275, 209 (2005)
[24] Hiroshi Amano, Masahiro Kito, Kazumasa Hiramatsu, and Isamu Akasaki, “P-Type Conduction in Mg-Doped GaN Treated with Low-Energy Electron Beam Irradiation (LEEBI)”, Jpn. J. Appl. Phys Part 2-Letters 28, 2112 (1989)
[25] Shuji Nakamura, Naruhito Iwasa, Masayuki Senoh and Takashi Mukai, “Hole Compensation Mechanism of P-Type GaN Films”, Jpn. J. Appl. Phys. 31,1258 (1992)
[26] B. P. Luther, S. E. Mohney, T. N. Jackson, M. Asif Khan, Q. Chen, and J. W. Yang, “Investigation of the mechanism for Ohmic contact formation in Al and Ti/Al contacts to n-type GaN”, Appl. Phys. Lett. 70, 57 (1997)
[27] S. Ruvimov, Z. Liliental-Weber, J. Washburn, K. J. Duxstad, E. E. Haller, Z.-F. Fan, S. N. Mohammad, W. Kim, A. E. Botchkarev, and H. Morkoç, “Microstructure of Ti/Al and Ti/Al/Ni/Au Ohmic contacts for n-GaN”, Appl. Phys. Lett. 69, 1556 (1996)
[28] M.J. Theunissen et al., J. Electrochem. Soc., (1970)
[29] C. Hums, T. Finger, T. Hempel, J. Christen, A. Dadgar, A. Hoffmann, and A. Krost, “Fabry-Perot effects in InGaN/GaN heterostructures on Si-substrate”, J. Appl. Phys. 101, 033113 (2007)