跳到主要內容

簡易檢索 / 詳目顯示

研究生: 伍金記
Chin-chi Wu
論文名稱: 成長於矽基板之半極化氮化鎵磊晶層特性研究
指導教授: 綦振瀛
Jen-inn Chyi
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
畢業學年度: 97
語文別: 中文
論文頁數: 101
中文關鍵詞: 半極化氮化鎵矽基板
外文關鍵詞: semiploar GaN, (001)Si
相關次數: 點閱:18下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文報告利用矽當作成長氮化鎵材料的基板,成功將量子井結構成
    長於傾斜7°(001)Si 圖形化基板上,並分析其結構與光學特性。
    由於氮化鎵材料與矽基板的晶格常數與熱膨脹係數差異甚大,為了避
    免氮化鎵材料產生裂縫,本研究藉由低溫氮化鋁緩衝層及多孔氮化矽以釋
    放應力和減少缺陷密度。
    為了使氮化鎵的發光效率提高,本研究於傾斜7°(001)Si 圖形化基板上
    成長半極化(1-101)氮化鎵材料,並發現所產生的缺陷位置都在相鄰的氮化
    鎵區塊接合處,而在接合處以外的地方則幾乎無缺陷存在。X-ray 繞射實驗
    也顯示在(1-101)氮化鎵上成長氮化銦鎵時,銦的含量會較在(0001)面少,且
    成長速率較慢。很可能是因為銦含量低的關係,其表面並無V 形缺陷。另
    經變溫光激螢光量測得知在(1-101)面上的氮化銦鎵量子井具較高活化能,
    可能是因為載子所需跨越位障比(0001)面較高。


    The main challenge for growing GaN on Si is overcome the cracking issue caused by the large mismatch in lattice constants and thermal expansion coefficients between GaN and Si. Various growth methods, such as LT-AlN interlayer, AlGaN graded layer, and in situ SiN layer, have been proposed to cope with this issue. These interlayers are usually effective in both strain reduction and dislocation blocking. Using these techniques, we are able to produce blue light-emitting diodes with a maximum output power of 1.2 mW at 80 mA. In order to improve the luminescence efficiency, growth of semi-polar (1-101) GaN on patterned 7-degree off (001) Si substrate is investigated. It is found that high quality GaN can be obtained by this method and defects are localized in the area, at which the coalescence of GaN crystal occurs. InGaN quantum wells grown on the template exhibit no V-defect. Their photoluminescence intensity is not sensitive to In content for the In content studied. They also have higher activation energy and show less localization effect.

    目錄 中文摘要 i 英文摘要 ii 誌謝 iii 目錄 iv 圖目錄 vi 表目錄 x 第一章 導論 1 §1-1 前言 1 §1-2 氮化鎵發光二極體發展近況 3 §1-3 研究動機與目的 6 第二章 成長於傾斜7°(001)Si基板之半極化氮化鎵 9 §2-1 簡介 9 §2-2 半極化氮化鎵磊晶成長 10 第三章 半極化氮化鎵磊晶結構特性分析 15 §3-1 材料磊晶結構特性分析 15 §3-2 X-ray繞射光譜及材料表面結構特性分析 22 §3-3 陰極螢光光譜分析 26 §3-4 總結 29 第四章 半極化氮化銦鎵/氮化鎵光學特性分析 30 §4-1 氮化鎵材料光學特性分析 30 §4-2 氮化鎵材料活化能分析 33 §4-3 侷限化效應影響(localization effect) 38 §4-4 總結 43 第五章 結論 44 參考文獻 45 附錄 成長於(111)Si基板之氮化鎵發光二極體特性分析 48 §6-1 氮化鎵發光二極體磊晶結構 48 §6-2 氮化鎵發光二極體製作 55 §6-3 X-ray繞射光譜及材料表面結構特性分析 69 §6-4 光電特性分析 73 §6-5 總結 87 圖目錄 圖1-1 氮化物發光波長範圍 1 圖1-2 光線從氮化鎵晶體出光角度 4 圖2-1 角度計算示意圖 9 圖2-2 (001)Si蝕刻之V形凹槽 10 圖2-3 傾斜7°(001)Si蝕刻之V形凹槽 10 圖2-4 成長半極化(1-101)氮化鎵晶體結構 10 圖2-5 E-gun蒸鍍腔體 13 圖2-6 (1-101)半極化氮化鎵成長流程 14 圖3-1 矽基板經KOH蝕刻後 15 圖3-2 成長緩衝層於V形凹槽基板上 16 圖3-3 二氧化矽蒸鍍於所需之區域 17 圖3-4 成長氮化鎵晶體於斜面上 17 圖3-5 氮化鎵晶體不易成長於二氧化矽殘留處 18 圖3-6 氮化鎵晶體於含底切之V形凹槽矽基板上成長 18 圖3-7 氮化鎵晶體於含底切之V形凹槽矽基板上成長模型示意圖 18 圖3-8 氮化鎵晶體於較厚的緩衝層上成長 19 圖3-9氮化鎵晶體於較厚的緩衝層上成長模型示意圖 19 圖3-10 成長氮化鎵晶體時產生meltback etching現象 21 圖3-11 氮化鎵晶體接合為連續薄膜 21 圖3-12 (1-101)氮化鎵AFM表面輪廓 21 圖3-13 氮化鎵裂縫方向與產生應力方向示意圖 22 圖3-14 無裂縫之半極化(1-101)氮化鎵連續薄膜 22 圖3-15 於(a)傾斜7°(001)Si圖形化基板(b)(111)Si基板(c)藍寶石基板上成長量子井之表面輪廓 24 圖3-16 V形缺陷形成之模型示意圖 25 圖3-17 (1-101)半極化氮化鎵CL光譜圖(a)未含LT-AlN(b)含LT-AlN 27 圖3-18 (1-101)半極化氮化鎵SEM及CL影像(a)未含LT-AlN(b)含LT-AlN 28 圖3-19 (1-101)半極化氮化鎵缺陷成長示意圖 29 圖4-1 氮化鎵材料成長於傾斜7°(001)Si圖形化基板、(111)Si基板、藍寶石基板之PL特性比較 31 圖4-2 不同In含量之量子井成長於傾斜7°(001)Si基板、(111)Si基板、藍寶石基板之PL特性比較 32 圖4-3 壓電場於不同極化面上在相異的In含量之變化 33 圖4-4 量子井成長於傾斜7°(001)Si基板氮化鎵材料之活化能 34 圖4-5 量子井成長於(111)Si基板氮化鎵材料之活化能 35 圖4-6 量子井成長於藍寶石基板氮化鎵材料之活化能 36 圖4-7 量子井成長於(a)(1-101)GaN(b)(0001)GaN之能帶圖 37 圖4-8 量子井成長於傾斜7°(001)Si基板氮化鎵材料能量對溫度之變化 40 圖4-9 量子井成長於(111)Si基板氮化鎵材料能量對溫度之變化 41 圖4-10 量子井成長於藍寶石基板氮化鎵材料能量對溫度之變化 42 圖4-11 能量隨溫度變化之關係圖 43 圖4-12 於量子井中載子侷限化情形 43 圖6-1 氮化鎵發光二極體成長於(111)Si基板之磊晶結構 50 圖6-2 於2英吋(111)Si基板成長無裂縫LED結構 52 圖6-3 矽晶格排列方向示意圖 52 圖6-4 氮化物晶格排列結構(wurtzite) 52 圖6-5 晶體薄膜所受應力種類 54 圖6-6 氮化鎵發光二極體結構示意圖 55 圖6-7 HNA / HNW蝕刻反應速率 65 圖6-8 氮化鎵水平導通發光二極體製作示意圖 66 圖6-9 氮化鎵垂直導通發光二極體製作示意圖 67 圖6-10 Sample A至Sample D之AFM表面輪廓 70 圖6-11 SiN沉積時間影響表面粗糙度之關係 71 圖6-12 SiN沉積時間與(002)GaN和(102)GaN之關係 72 圖6-13 Sample A至Sample D之PL量測光譜比較 74 圖6-14 Sample A至Sample D之I-V特性曲線 76 圖6-15 Sample A至Sample D之TLM量測 78 圖6-16 Sample C與Sample D之電激發光影像 79 圖6-17 Sample A至Sample D於10 mA到100 mA之電激發光光譜 81 圖6-18 Sample C與Sample D發光強度 83 圖6-19 LED on Cu元件結構 85 圖6-20 LED on Si與LED on Cu之順偏特性比較 85 圖6-21 LED on Si與LED on Cu之EL特性比較 86 圖6-22 LED on Cu之電激發影像 86 表目錄 表1-1 發光二極體與傳統照明光源比較 3 表1-2 基板特性之比較 7 表1-3 圖形化基板之技術比較 8 表3-1 成長半極化氮化鎵之問題與解決方式 19 表3-2 量子井成長條件 23 表3-3 表面粗糙度與V形缺陷密度 25 表3-4 In含量與量子井厚度(well+barrier厚度) 25 表4-1 不同In含量之量子井發光波長與半高寬 32 表6-1 銅基板與銦金屬蝕刻測試 64 表6-2 Sample A、B、C、D之RMS S.R. 70 表6-3 XRC量測(002)GaN和(102)GaN半高寬及表面形態 72 表6-4 Sample A至Sample D之PL相對強度比較 74 表6-5 Sample A至Sample D之I-V之特性比較 77 表6-6 Sample A至Sample D之材料片電阻及金屬接觸電阻 79 表6-7 Sample C與Sample D光強度比較 83 表6-8 LED on Si與LED on Cu之特性比較 86

    [1] Kevin Linthicum, Thomas Gehrke, Darren Thomson, Eric Carlson, Pradeep Rajagopal, Tim Smith, Dale Batchelor, and Robert Davis, “Pendeoepitaxy of gallium nitride thin films”, Appl. Phys. Lett. 75, 196 (1999)
    [2] Eun-Hyun Park, Jin Jang, Shalini Gupta, Ian Ferguson, Cheol-Hoi Kim, Soo-Kun Jeon, and Joong-Seo Park, “Air-voids embedded high efficiency InGaN-light emitting diode”, Appl. Phys. Lett. 93, 191103 (2008)
    [3] Wei Chih Peng and Yew Chung Sermon Wu, “Improved luminance intensity of InGaN–GaN light-emitting diode by roughening both the p-GaN surface and the undoped-GaN surface”, Appl. Phys. Lett. 89, 041116 (2006)
    [4] Akihiko Murai, Daniel B. Thompson, Hisashi Masui, Natalie Fellows, Umesh K. Mishra, Shuji Nakamura, and Steven P. DenBaars, “Hexagonal pyramid shaped light-emitting diodes based on ZnO and GaN direct wafer bonding”, Appl. Phys. Lett. 89, 171116 (2006)
    [5] Jung-Tang Chu, Hung-Wen Huang, Chih-Chiang Kao, Wen-Deng Liang, Fang-I Lai, Chen-Fu Chu, Hao-Chung Kuo, and Shing-Chung Wang, “Fabrication of Large-Area GaN-Based Light-Emitting Diodes on Cu Substrate”, Jpn. J. Appl. Phys. 44, 2509 (2005)
    [6] C E Lee, Y C Lee, H C Kuo, M R Tsai, T C Lu, and S CWang, “High brightness GaN-based flip-chip light-emitting diodes by adopting geometric sapphire shaping structure”, Semicond. Sci. Technol. 23, 025015 (2008)
    [7] G.M. Wu, Z.J. Cai, J.C. Wang, and T.E. Nee, “Design and simulation in GaN based light emitting diodes using focused ion beam generated photonic crystals”, Surf. Coat. Technol. 203, 2674 (2009)
    [8] J. Dorsaz, J.-F. Carlin, C. M. Zellweger, S. Gradecak, and M. Ilegems, “InGaN/GaN resonant-cavity LED including an AlInN/GaN Bragg mirror”, Phys. Stat. Sol. (a) 201, 2675 (2004)
    [9] Hyunsoo Kim, Kyoung-Kook Kim, Kwang-Ki Choi, Hyungkun Kim, June-O Song, Jaehee Cho, Kwang Hyeon Baik, Cheolsoo Sone, Yongjo Park, and Tae-Yeon Seong, “Design of high-efficiency GaN-based light emitting diodes with vertical injection geometry”, Appl. Phys. Lett. 91, 023510 (2007)
    [10] Yoshio Honda, Norifumi Kameshiro, Masahito Yamaguchi, and Nobuhiko Sawaki, “Growth of (1-101) GaN on a 7-degree off-oriented (001)Si substrate by selective MOVPE”, J. Cryst. Growth 242, 82 (2002)
    [11] Baoshun Zhang, Hu Liang, Yong Wang, Zhihong Feng, Kar Wei Ng, and Kei May Lau, “High-performance III-nitride blue LEDs grown and fabricated on patterned Si substrates”, J. Cryst. Growth 298, 725 (2007)
    [12] Shigeyasu Tanaka, Yoshio Honda, Nobuhiko Sawaki, and Michio Hibino, “Structural characterization of GaN laterally overgrown on a (111)Si substrate”, Appl. Phys. Lett. 79, 955 (2001)
    [13] A. Strittmatter, S. Rodt, L. Reißmann, D. Bimberg, H. Schröder, E. Obermeier, T. Riemann, J. Christen, and A. Krost, “Maskless epitaxial lateral overgrowth of GaN layers on structured Si(111) substrates”, Appl. Phys. Lett. 78, 727 (2001)
    [14] K.Y. Zang, Y.D. Wang, L.S. Wang, S. Tripathy, S.J. Chua, and C.V. Thompson, “Nanoheteroepitaxy of GaN on a nanopore array of Si(111) surface”, Thin Solid Films 515, 4505 (2007)
    [15] Guan-Ting Chen, Jen-Inn Chyi, Chia-Hua Chan, Chia-Hung Hou, Chii-Chang Chen, and Mao-Nan Chang, “Crack-free GaN grown on AlGaN/(111)Si micropillar array fabricated by polystyrene microsphere lithography”, Appl. Phys. Lett. 91, 261910 (2007)
    [16] H. K. Cho, J. Y. Lee, G. M. Yang, and C. S. Kim, “Formation mechanism of V defects in the InGaN/GaN multiple quantum wells grown on GaN layers with low threading dislocation density”, Appl. Phys. Lett. 79, 215 (2001)
    [17] M. Feneberg, F. Lipski, R. Sauer, K. Thonke, T. Wunderer, B. Neubert, P. Brückner, and F. Scholz, “Piezoelectric fields in GaInN/GaN quantum wells on different crystal facets”, Appl. Phys. Lett. 89, 242112 (2006)
    [18] Yukio Narukawa, Yoichi Kawakami, Mitsuru Funato, Shizuo Fujita, Shigeo Fujita and Shuji Nakamura, “Role of self-formed InGaN quantum dots for exciton localization in the purple laser diode emitting at 420 nm”, Appl. Phys. Lett. 70, 981 (1997)
    [19] T. Wang, J. Ba, S. Sakai and J. K. Ho, “Investigation of the emission mechanism in InGaN/GaN-based light-emitting diodes”, Appl. Phys. Lett. 78, 2617 (2001)
    [20] F. Schulze, A. Dadgar, J. Bläsing, and A. Krost, “Influence of buffer layers on metalorganic vapor phase epitaxy grown GaN on Si(001)”, Appl. Phys. Lett. 84, 4747 (2004)
    [21] A. Krost, and A. Dadgar, “GaN-Based Devices on Si”, Phys. Stat. Sol. (a) 194, 361 (2002)
    [22] A. Krost, A. Dadgar, G. Strassburger, and R. Clos, “GaN-based epitaxy on silicon: stress measurements”, Phys. Stat. Sol. (a) 200, 26 (2003)
    [23] A. Krost, A. Dadgar, F. Schulze, J. Bläsing, G. Strassburger, R. Clos, A. Diez, P. Veit, T. Hempel, and J. Christen, “In situ monitoring of the stress evolution in growing group-III-nitride layers”, J. Cryst. Growth 275, 209 (2005)
    [24] Hiroshi Amano, Masahiro Kito, Kazumasa Hiramatsu, and Isamu Akasaki, “P-Type Conduction in Mg-Doped GaN Treated with Low-Energy Electron Beam Irradiation (LEEBI)”, Jpn. J. Appl. Phys Part 2-Letters 28, 2112 (1989)
    [25] Shuji Nakamura, Naruhito Iwasa, Masayuki Senoh and Takashi Mukai, “Hole Compensation Mechanism of P-Type GaN Films”, Jpn. J. Appl. Phys. 31,1258 (1992)
    [26] B. P. Luther, S. E. Mohney, T. N. Jackson, M. Asif Khan, Q. Chen, and J. W. Yang, “Investigation of the mechanism for Ohmic contact formation in Al and Ti/Al contacts to n-type GaN”, Appl. Phys. Lett. 70, 57 (1997)
    [27] S. Ruvimov, Z. Liliental-Weber, J. Washburn, K. J. Duxstad, E. E. Haller, Z.-F. Fan, S. N. Mohammad, W. Kim, A. E. Botchkarev, and H. Morkoç, “Microstructure of Ti/Al and Ti/Al/Ni/Au Ohmic contacts for n-GaN”, Appl. Phys. Lett. 69, 1556 (1996)
    [28] M.J. Theunissen et al., J. Electrochem. Soc., (1970)
    [29] C. Hums, T. Finger, T. Hempel, J. Christen, A. Dadgar, A. Hoffmann, and A. Krost, “Fabry-Perot effects in InGaN/GaN heterostructures on Si-substrate”, J. Appl. Phys. 101, 033113 (2007)

    QR CODE
    :::