| 研究生: |
萬米山 Milzam Wafi Azhar |
|---|---|
| 論文名稱: |
其他綜合收益在預測破產中的作用 The Role of Other Comprehensive Income in Predicting Bankruptcy |
| 指導教授: | 梁德容 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 資訊工程學系 Department of Computer Science & Information Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 英文 |
| 論文頁數: | 43 |
| 中文關鍵詞: | 其他綜合收益 (OCI) 、財務比率 、破產預測 |
| 外文關鍵詞: | other comprehensive income (OCI), financial ratio, bankruptcy prediction |
| 相關次數: | 點閱:10 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究旨在填補破產預測研究的空白。我們專注於變量預測變量,而之前的大多數研究都使用基於財務比率的模型進行預測。沒有一項研究將財務比率和其他綜合收益 (OCI) 結合起來。以前沒有研究分析過 OCI 如何影響破產預測模型中財務比率的表現。因此,本研究的動機是一個研究問題:總 OCI 能否幫助財務比率開發更好的破產預測模型?為了研究這些問題,我們提出了財務比率和總OCI模型並進行了深入分析。與基線模型相比,我們的模型具有更高的預測精度和更低的 I 類和 II 類錯誤率。實驗表明,總OCI可以幫助財務比率提前一年預測美國上市公司的破產情況。調查結果將幫助私人和公共投資者做出貸款決定。
This study aims to fill a gap in the research on bankruptcy prediction. We focus on variable predictors, whereas most previous research used a financial ratio-based model to make a prediction. None of the studies present a combination of financial ratios and other comprehensive income (OCI). And none prior study analyzed how OCI affect financial ratios on the performance of bankruptcy prediction models. As a result, this study is motivated by a research question: Could total OCI assist financial ratios in developing a better bankruptcy prediction model? To investigate these issues, we proposed a financial ratio and total OCI model and conducted a thorough analysis. Compared with the benchmark model, our model’s prediction accuracy is higher and the Type I and Type II error rate is lower. Experiment revealed that total OCI could assist financial ratios in predicting bankruptcy one year ahead in US-listed companies. These finding will help private and public investors make lending decisions.
[1] E. I. Altman, “Financial ratios, discriminant analysis and the prediction of corporate bankruptcy,” The Journal of Finance, vol. 23, no. 4, pp. 589–609, Sep. 1968.
[2] J. A. Ohlson, “Financial Ratios and the Probabilistic Prediction of Bankruptcy,” Journal of Accounting Research, vol. 18, no. 1, p. 109, 1980.
[3] F. Barboza, H. Kimura, and E. Altman, “Machine learning models and bankruptcy prediction,” Expert Systems with Applications, vol. 83, pp. 405–417, 2017.
[4] W. H. Beaver, “Financial Ratios as Predictors of Failure,” Journal of Accounting Research, vol. 4, pp. 71–111, 1966.
[5] D. Liang, C.-C. Lu, C.-F. Tsai, and G.-A. Shih, “Financial ratios and corporate governance indicators in bankruptcy prediction: A comprehensive study,” European Journal of Operational Research, vol. 252, no. 2, pp. 561–572, 2016.
[6] Anderson, Joshua D., et al. “Other Comprehensive Income, Its Components, and Analysts’ Forecasts.” SSRN Electronic Journal, 2021.
[7] Dinda et al, “Role of Comprehensive Income in Predicting Bankruptcy”. National Central University, Taiwan, 2013.
[8] J. LEE, S. J. LEE, S. CHOI, and S. KIM, “The Usefulness of Other Comprehensive Income for Predicting Future Earnings,” The Journal of Asian Finance, Economics and Business, vol. 7, no. 5, pp. 31–40, May 2020.
[9] Kanagaretnam, K., Mathieu, R., & Shehata, M. (2009). Usefulness of comprehensive income reporting in Canada. Journal of Accounting and Public Policy, 28(4), 349–365.
[10] Chambers, D., Linsmeier, T. J., Shakespeare, C., & Sougiannis, T. (2007). An evaluation of SFAS No. 130 comprehensive income disclosures. Review of Accounting Studies, 12(4), 557–593. https://doi.org/10.1007/s11142-007-9043-2
[11] J. L. Bellovary, D. E. Giacomino, and M. D. Akers, “A Review of Bankruptcy Prediction Studies: 1930 to Present,” Journal of Financial Education, vol. 33, no. Winter, pp. 1–42, 2007.
[12] L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1, pp. 5–32, 2001.
[13] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, Classification And Regression Trees, vol. 1, no. 1. 1984.
[14] C. Kelly and K. Okada, “Variable interaction measures with random forest classifiers,”
Proceedings - International Symposium on Biomedical Imaging, pp. 154–157, 2012.
[15] J. Efrim Boritz and D. B. Kennedy, “Effectiveness of neural network types for prediction of business failure,” Expert Systems With Applications, vol. 9, no. 4, pp. 503–512, 1995.
[16] J. Demšar, “Statistical Comparisons of Classifiers over Multiple Data Sets,” Journal of Machine Learning Research, vol. 7, pp. 1–30, 2006.