跳到主要內容

簡易檢索 / 詳目顯示

研究生: 詹翊鋒
Yi-Fong Jhan
論文名稱: 結合APOS理論與科技輔助學習之數學教學行動研究
An Action Research on Mathematics Instruction Integrating APOS Theory and Technology-Enhanced Learning
指導教授: 吳穎沺
Ying-Tien Wu
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 網路學習科技研究所
Graduate Institute of Network Learning Technology
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 124
中文關鍵詞: ACE教學循環行動研究APOS理論教師專業發展科技輔助學習
外文關鍵詞: ACE teaching cycle, Action Research, APOS theory, Teacher Professional Development, Technology-Enhanced Learning
相關次數: 點閱:20下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本行動研究旨在增進教學者(亦即研究者本人)關於高職數學教學之專業知能,本研究的參與對象是研究者本人,以及研究者任教班的32名高職二年級學生。此次行動研究將進行基於APOS Theory的ACE teaching cycle為一個教學循環,共進行兩個循環,歷時6週共18節課。
    研究者在每一個教學循環結束後,皆進行資料整理與省思,並以此作為下一階段教學策略調整與優化的依據。歷經兩次教學循環後,教師逐漸觀察到學生的學習歷程從「學會」邁向「想學」,進而促使教學者重新思考自身的教學信念與專業知能。教師的教學信念也從最初的老師「教完」,轉向重視是否真正「教會」學生,最終發展為「啟學」的理念,致力於激發學生主動探索與反思的學習態度。最後,研究者基於教學歷程與省思,提出運用APOS理論之ACE教學循環與科技輔助學習於數學教學的具體建議,以作為未來課堂教學設計與實踐的參考。
    本行動研究的結論為教學者在ACE教學循環中得到的教學實務經驗,除了形成一套數學教學活動準備與進行流程,也提供教師在規劃數學教學活動時的注意事項,另外藉由此次的行動研究,研究者除了發現行動研究對教師專業發展的正面意義,也建議教師可以將APOS理論中的ACE教學循環應用於其他學科課程中進行。


    This action research aimed to enhance the professional knowledge of the teacher-researcher in vocational high school mathematics instruction. The study involved the teacher-researcher and 32 second-year students from the researcher’s class and was conducted over two instructional cycles, spanning six weeks and 18 class sessions, using the ACE Teaching Cycle grounded in APOS Theory. After each cycle, the researcher collected and analyzed data, reflected on the instructional process, and used these insights to adjust teaching strategies. Throughout the two cycles, the teacher observed a shift in students’ learning attitudes—from acquiring knowledge to a desire to learn—which prompted a re-evaluation of teaching beliefs and professional growth. The teacher’s perspective evolved from focusing on being able to teach well, to ensuring students truly understand, and ultimately to inspiring students to actively explore and reflect. Based on the instructional process and reflections, the researcher offers practical suggestions for applying APOS Theory, the ACE Teaching Cycle, and Technology-Enhanced Learning in mathematics instruction to inform future lesson design and teaching practice.. The study concludes that engaging in the ACE Teaching Cycle provides not only a structured approach to planning and implementing mathematics instruction but also valuable insights for professional development. Furthermore, the researcher suggests that the ACE Teaching Cycle may be beneficially applied to other subject areas.

    摘要 i Abstract ii 致謝 iii 目錄 iv 圖目錄 viii 表目錄 ix 第一章 緒論 1 第一節 研究背景與動機 1 第二節 研究目的 4 第三節 名詞解釋 5 一、APOS理論(Action, Process, Object, Schema Theory) 5 二、ACE教學循環(Activities, Class discussions, Exercises teaching cycle) 5 三、學習投入(Learning Engagement) 5 四、行動研究(Action Research) 5 第四節 研究範圍與限制 6 一、研究範圍 6 二、研究限制 6 第二章 文獻探討 7 第一節 APOS理論 7 一、APOS理論的起源與發展 7 二、APOS理論的核心概念 8 第二節 ACE教學循環 11 一、ACE教學循環的構成與原則 11 二、ACE教學循環與建構主義 15 三、ACE教學循環在數學教學中的應用 17 第三節 科技輔助學習(Technology-Enhanced Learning) 18 一、科技輔助的定義與內涵 18 二、科技輔助學習中的教師角色的轉變與挑戰 19 三、科技輔助學習在數學教育中的應用與成效 21 第四節 學習投入 23 一、學習投入的定義與面向 23 二、影響學習投入的因素 25 三、科技輔助學習與學習投入的關聯 26 第五節 教師持續專業發展 27 一、教師專業發展的意義與內涵 27 二、行動研究與教師專業發展的關聯 28 第三章 研究方法 32 第一節 研究情境與研究對象 32 一、研究情境 32 二、研究對象 33 第二節 研究流程 35 一、教學前計畫準備階段 36 二、教學計劃實施與修正階段 36 三、教學後教師自我反思整理階段 37 第三節 課程設計 39 第四節 資料蒐集與分析 42 一、資料蒐集 42 二、資料分析 46 第四章 研究結果與討論 48 第一節 第一循環之教學活動歷程 48 一、行動研究之準備階段 48 二、教學活動實施過程與過程中的省思 55 三、完成整個循環教學活動後之省思成長 57 四、小結 64 第二節 第二循環之教學活動歷程 65 一、第二循環教學前行動策略的修改 65 二、教學活動實施過程與過程中的省思 69 三、完成第二循環教學活動後之省思成長 75 四、小結 78 第三節 教師專業發展 79 一、教學者對教學實務過程的反思與成長歷程 79 二、教學者對教學活動設計理念之調整 80 三、教學者對數學教學信念改變的歷程 82 四、科技輔助學習能力之成長 83 五、小結 84 第五章 結論與建議 85 第一節 研究結論 85 一、基於行動研究後教師教學模式的改變 85 二、歷經行動研究後教師教學信念的轉變 86 三、基於APOS理論與科技輔助學習對於學生的改變 86 第二節 研究建議 88 一、對於教師進行行動研究 88 二、對於教師教學實務的建議 89 三、對於教師專業發展的建議 91 參考文獻 93 附錄 101 附錄一 教學活動學習單(第一循環) 101 附錄二 教學活動學習單(第二循環) 104 附錄三 教學回饋單(第一循環) 109 附錄四 教學回饋單(第二循環) 110 附錄五 學習投入量表 (Handelsman et al., 2005) 111

    張德銳(2007)。教學行動研究:實務手冊與理論介紹。臺北:高等教育。
    張德銳、李俊達(2011)。教學行動研究對中學教師教學省思影響之研究。教育研究與發展期刊,7(1),151-178。
    張靜嚳(1996)。傳統教學有何不妥。國立彰化師範大學科學教育研究所:建構與教學期刊,4。
    陳英娥、林福來(2004)。行動研究促進初任數學教師的教學成長。科學教育學刊,12(1),83-105。
    Álvarez, J. A., Arnold, E. G., Burroughs, E. A., Fulton, E. W., & Kercher, A. (2020). The design of tasks that address applications to teaching secondary mathematics for use in undergraduate mathematics courses. The Journal of Mathematical Behavior, 60, 100814. https://doi.org/10.1016/j.jmathb.2020.100814
    Anastasija, M., & Jelena, M. (2021). THE ROLE OF ACTION RESEARCH IN TEACHERS’PROFESSIONAL DEVELOPMENT. International Journal of Cognitive Research in Science, Engineering and Education, 9(3), 301-317. https://doi.org/10.23947/2334-8496-2021-9-3-301-317
    Angraini, L. M., Kania, N., & Gürbüz, F. (2024). Students' Proficiency in Computational Thinking Through Constructivist Learning Theory. International Journal of Mathematics and Mathematics Education, 2(1), 45-59. https://doi.org/10.56855/ijmme.v2i1.963
    Arnon, I., Cottrill, J., Dubinsky, E., Oktaç, A., Fuentes, S. R., Trigueros, M., & Weller, K. (2013). APOS theory: A framework for research and curriculum development in mathematics education. Springer Science & Business Media. https://doi.org/10.1007/978-1-4614-7966-6_6
    Asiala, M., Brown, A., DeVries, D. J., Dubinsky, E., Mathews, D., & Thomas, K. (1996). Curriculum Development in. Research in collegiate mathematics education II, 2, 1. . https://doi.org/10.1090/cbmath/006/01
    Attard, C., & Holmes, K. (2020). “It gives you that sense of hope”: An exploration of technology use to mediate student engagement with mathematics. Heliyon, 6(1). https://doi.org/10.1016/j.heliyon.2019.e02945
    Bandura, A., & Walters, R. H. (1977). Social learning theory (Vol. 1, pp. 141-154). Englewood Cliffs, NJ: Prentice hall.
    Baye, M. G., Ayele, M. A., & Wondimuneh, T. E. (2021). Implementing GeoGebra integrated with multi-teaching approaches guided by the APOS theory to enhance students’ conceptual understanding of limit in Ethiopian Universities. Heliyon, 7(5). https://doi.org/10.1016/j.heliyon.2021.e07012
    Carr, W., & Kemmis, S. (2003). Becoming critical: education knowledge and action research. Routledge.
    Cohen, L., Manion, L., & Morrison, K. (2017). Action research. In Research methods in education (pp. 440-456). Routledge. https://doi.org/10.4324/9781315456539-22
    Creemers, B., Kyriakides, L., & Antoniou, P. (2013). Teacher Professional Development for improving Quality of Teaching. https://doi.org/10.1007/978-94-007-5207-8
    Dempsey, P. R., & Zhang, J. (2019). Re-examining the construct validity and causal relationships of teaching, cognitive, and social presence in Community of Inquiry framework. Online Learning, 23(1), 62–79. https://doi.org/10.24059/olj.v23i1.1419
    Dubinsky, E. (1991). Reflective abstraction in advanced mathematical thinking. In Advanced mathematical thinking (pp. 95-126). Dordrecht: Springer Netherlands.
    Dubinsky, E., & Leron, U. (1994). Learning abstract algebra with ISETL. New York: Springer. DOI: 10.1007/978-1-4612-2602-4.
    Dubinsky, E., & McDonald, M. A. (2001). APOS: A constructivist theory of learning in undergraduate mathematics education research. In The teaching and learning of mathematics at university level: An ICMI study (pp. 275-282). Dordrecht: Springer Netherlands. https://doi.org/10.1007/0-306-47231-7_25
    Dunn, T. J., & Kennedy, M. (2019). Technology Enhanced Learning in higher education; motivations, engagement and academic achievement. Computers & education, 137, 104-113.
    Earl, S. R., Taylor, I. M., Meijen, C., & Passfield, L. (2023). Trajectories in cognitive engagement, fatigue, and school achievement: The role of young adolescents' psychological need satisfaction. Learning and Individual Differences, 101, 102248. https://doi.org/10.1016/j.lindif.2022.102248
    Epstein, J. L., & McPartland, J. M. (1976). The concept and measurement of the quality of school life. American Educational Research Journal, 13, 15–30. https://doi.org/10.3102/00028312013001015
    Foshee, C. M., Elliott, S. N., & Atkinson, R. K. (2016). Technology‐enhanced learning in college mathematics remediation. British Journal of Educational Technology, 47(5), 893-905.
    Fredricks, J. A., Blumenfeld, P. C., & Paris, A. H. (2004). School engagement: Potential of the concept, state of the evidence. Review of educational research, 74(1), 59-109. https://doi.org/10.3102/00346543074001059
    Gao, Z. Y., & Newton, M. (2009). Examining the mediating role of strategy use on students' motivation and persistence/ effort in physical education. Journal of Sport Behavior, 32(3),275-297. https://doi.org/10.1123/jtpe.31.3.246
    Handelsman, M. M., Briggs, W. L., & Sullivan, N. (2005). A measure of college student course engagement. Journal of Educational Research, 98(3), 184-191. https://doi.org/10.3200/JOER.98.3.184-192
    Hernández, F. R., Durón-Ramos, M. F., García-Vázquez, F. I., Chacón-Andrade, E. R., & Rivera, M. E. L. (2024). Effects of classroom climate and eudaimonic well-being on student engagement in Mexico and El Salvador. International Journal of Educational Research Open, 7, 100349. https://doi.org/10.1016/j.ijedro.2024.100349
    Hiebert, J., Gallimore, R., & Stigler, J. W. (2003) The new heroes of teaching. Education Week 23(10), 56, 42. Retrieved November 2003.
    Johnson, K. E., & Golombek, P. R. (2011). A sociocultural theoretical perspective on teacher professional development. In Research on second language teacher education (pp. 15-26). Routledge.
    Kali, Y., McKenney, S., & Sagy, O. (2015). Teachers as designers of technology enhanced learning. Instructional science, 43, 173-179.
    Kedzior, M., & Fifield, S. (2004). Teacher professional development.
    Kirkwood, A., & Price, L. (2014). Technology-enhanced learning and teaching in higher education: what is ‘enhanced’and how do we know? A critical literature review. Learning, media and technology, 39(1), 6-36.
    Kurvinen, E., Kaila, E., Laakso, M. J., & Salakoski, T. (2020). Long term effects on technology enhanced learning: The use of weekly digital lessons in mathematics. Informatics in Education, 19(1), 51-75.
    Laurillard, D., Oliver, M., Wasson, B., & Hoppe, U. (2009). Implementing technology-enhanced learning. Technology-enhanced learning: Principles and products, 289-306.
    Maharaj, A. (2010). An APOS analysis of students' understanding of the concept of a limit of a function. Pythagoras, 2010(71), 41-52. https://doi.org/10.4102/pythagoras.v0i71.6
    Maharaj, A. (2014). An APOS analysis of natural science students’ understanding of integration. Journal of Research in Mathematics Education, 3(1), 54-73. https://doi.org/10.4471/redimat.2014.40
    Meyer, D. K., & Turner, J. C. (2006). Reconceptualizing emotion and motivation to learn in classroom contexts. Educational Psychology Review,18, 377-390. https://doi.org/10.1007/s10648-006-9032-1
    Mih, V., Mih, C., & Dragoş, V. (2015). Achievement goals and behavioral and emotional engagement as precursors of academic adjusting. Procedia-Social and Behavioral Sciences, 209, 329-336. https://doi.org/10.1016/j.sbspro.2015.11.243
    Ningsih, Y. L., & Darmawijoyo, Y. H. (2015, April). DEVELOPING STUDENTS’WORKSHEET OF DERIVATIVE BASED ON APOS THEORY. The Third South East Asia Design/Development Research. International Conference.
    Özdemir, F., İlhan, A., & Aslaner, R. (2024). The effect of ACE cycle based instruction on geometry self-efficacy beliefs in polygons learning area. Learning and Motivation, 86, 101985. https://doi.org/10.1016/j.lmot.2024.101985
    Palobo, M., Sulaiman, R., & Rahaju, E. B. (2025). Construction of the Area of Rectangle Concept from the Perspective of APOS Theory. TEM Journal, 14(1). https://doi.org/10.18421/TEM141-14
    Parraguez, M., & Oktaç, A. (2010). Construction of the vector space concept from the viewpoint of APOS theory. Linear algebra and its applications, 432(8), 2112-2124. https://doi.org/10.1016/j.laa.2009.06.034
    Putwain, D. W., & Wood, P. (2023). Riding the bumps in mathematics learning: Relations between academic buoyancy, engagement, and achievement. Learning and Instruction, 83, 101691. https://doi.org/10.1016/j.learninstruc.2022.101691
    Scott, S., & Palincsar, A. (2013). Sociocultural theory.
    Serrano, D. R., Dea‐Ayuela, M. A., Gonzalez‐Burgos, E., Serrano‐Gil, A., & Lalatsa, A. (2019). Technology‐enhanced learning in higher education: How to enhance student engagement through blended learning. European Journal of Education, 54(2), 273-286.
    Shernoff, D. J., Kelly, S., Tonks, S. M., Anderson, B., Cavanagh, R. F., Sinha, S., & Abdi, B. (2016). Student engagement as a function of environmental complexity in high school classrooms. Learning and Instruction, 43, 52-60. https://doi.org/10.1016/j.learninstruc.2015.12.003
    Skinner, E. A., & Belmont, M. J. (1993). Motivation in the classroom: Reciprocal effects of teacher behavior and student engagement across the school year. Journal of educational psychology, 85(4), 571. https://doi.org/10.1037/0022-0663.85.4.571
    Spiro, R. J. (2017). Remembering information from text: The “state of schema” approach. In Schooling and the acquisition of knowledge (pp. 137-165). Routledge. https://doi.org/10.4324/9781315271644-11
    Thanheiser, E., & Melhuish, K. (2023). Teaching routines and student-centered mathematics instruction: The essential role of conferring to understand student thinking and reasoning. The Journal of Mathematical Behavior, 70, 101032. https://doi.org/10.1016/j.jmathb.2023.101032
    Thompson, P. (2010). Learning by doing. Handbook of the Economics of Innovation, 1, 429-476. https://doi.org/10.1016/S0169-7218(10)01010-5
    Tsafe, A. K. (2024). Effective mathematics learning through APOS theory by dint of cognitive abilities. Journal of Mathematics and Science Teacher, 4(2), 1-8. https://doi.org/10.29333/mathsciteacher/14308
    Vygotsky, L. S. (1978). Mind in society: The development of higher psychological processes (Vol. 86). Harvard university press.
    Vygotsky, L. S. (1997). The collected works of L. S. Vygotsky, Vol. 4: The history of the development of higher mental functions (R. W. Rieber, Vol. Ed; M. J. Hall, Trans.). New York: Plenum Press. (Original work published 1941)
    Wang, A. I., & Tahir, R. (2020). The effect of using Kahoot! for learning–A literature review. Computers & Education, 149, 103818. https://doi.org/10.1016/j.compedu.2020.103818
    Woods, P. J., & Copur-Gencturk, Y. (2024). Examining the role of student-centered versus teacher-centered pedagogical approaches to self-directed learning through teaching. Teaching and Teacher Education, 138, 104415. https://doi.org/10.1016/j.tate.2023.104415
    Yang, Q. F., Lin, C. J., & Hwang, G. J. (2021). Research focuses and findings of flipping mathematics classes: A review of journal publications based on the technology-enhanced learning model. Interactive Learning Environments, 29(6), 905-938.
    Ysseldyke, J., & Bolt, D. M. (2007). Effect of technology-enhanced continuous progress monitoring on math achievement. School Psychology Review, 36(3), 453-467.
    Zamecnik, A., Kovanović, V., Joksimović, S., & Liu, L. (2022). Exploring non-traditional learner motivations and characteristics in online learning: A learner profile study. Computers and Education: Artificial Intelligence, 3, 100051. https://doi.org/10.1016/j.caeai.2022.100051
    Zimmerman, B. J., & Risemberg, R. (1997). Self-regulatory dimensions of academic learning and motivation. In G. Phye (Ed.), Handbook of academic learning, pp. 105–125. New York: Academic Press. https://doi.org/10.1016/B978-012554255-5/50005-3

    QR CODE
    :::