跳到主要內容

簡易檢索 / 詳目顯示

研究生: 徐聲豪
Sheng-Hao Hsu
論文名稱: 溫度及應力對高密度分波多工器(DWDM)濾光片中心波長飄移之研究
Temperature and Stresses Effects on The Central Wavelength Shifting of Dense-Wavelength-Division-Multiplexing (DWDM) Filters
指導教授: 李正中
Cheng-Cung Lee
陳昇暉
Sheng-Hui Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
畢業學年度: 96
語文別: 中文
論文頁數: 72
中文關鍵詞: 應力溫飄高密度分波多工器(DWDM)濾光片
外文關鍵詞: Dense-Wavelength-Division-Multiplexing (DWDM) Fi, Stresses, temperature stability of the center wavelength
相關次數: 點閱:16下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • DWDM(Dense Wavelength Division Multiplexer)濾光片為光纖通訊系統中重要的光學元件,由於其膜厚較厚所以會產生較大的應力,當濾光片受熱,會受熱應力影響而改變濾光片的光學厚度,結果濾光片中心波長將隨溫度變化而產生飄移。Takahashi首先以應力模型為溫飄提出理論分析,基板的熱膨脹係數,薄膜的折射率、楊氏模數、帕松比、熱膨脹係數及折射率溫度係數等,均為影響溫飄的重要參數。而符合國際規範的DWDM 100GHz濾光片溫飄必須小於1pm/℃,也因此使得膜層數及膜厚增加。而在此情況下應力模型需要修正,同時也增加考慮應力對於折射率影響的應力光學常數。因此本論文即提出厚度修正後的應力模型分析應力對於DWDM濾光片中心波長飄移量的影響。也利用修正後的應力模型經實驗求得DWDM濾光片薄膜的線膨脹係數為0.87 ppm/℃。再由擬合實際溫飄值求得薄膜雙軸模數為41 GPa、帕松比為0.22、折射率溫度係數為1.4×10-5/℃、應力光學常數為-1.9×10-12 /Pa。以及SiO2的折射率溫度係數為2.0×10-5 /℃、應力光學常數為-1.9×10-12 /Pa;Nb2O5的折射率溫度係數為7.6×10-4 /℃、應力光學常數為-9.73×10-11 /Pa,而以上薄膜的相關資訊皆可提供未來設計DWDM濾光片的相關依據。


    Dense-wavelength-division-multiplexing (DWDM) filter is a kind of very important component for optical fiber communication. Since any tiny wavelength shift will make the filter ineffective. The temperature shift of central wavelength (TSCW) of DWDM filters has to be limited less than 1pm/oC based on the Bellcore GR-2883 standard. The TSCW of filters are depended on the mechanical properties of the stress. Takashashi was the first one to construct the theoretical model of TSCW using the Elastic Strain model in 1995. This model based on the Stoney’s equation showed that the most important parameters are CTE of the substrate and the film, besides the refractive index, Young’s modulus, Poisson ratio, the normalized temperature coefficient of refractive index (NTCRI) of the film are important too. However, when the thickness ratio of the substrate and the film is larger than 1%, the Stoney’s equation should be modified. Using the modified Stoney’s equation the CTE of the DWDM filter about 0.87 ppm/oC have been achieved. Then measured the TSCWs of different sizes and substrates of DWDM filters, we can achieve other parameters, the biaxial modulus, 41 GPa; the Poisson ratio, 0.22; the temperature coefficient of refractive index, 1.4×10-5/oC; and the stress-optic coefficient, -1.9×10-12 /Pa. With all the parameters we can predict the TSCWs of the different DWDM filters.

    目錄 第一章 緒論 1 1-1 研究動機 1 1-2 論文架構 3 第二章 基本理論 4 2-1 DWDM 濾光片設計與規格 4 2-1-1 Fabry-Perot之DWDM濾光片原理[4] 4 2-1-2 DWDM 濾光片設計 6 2-1-3 DWDM 濾光片規格 8 2-2 應力模型 11 2-2-1 雙軸應力模型 11 2-2-2 多層膜之應力[6] 13 2-3 溫飄模型 17 第三章 實驗架構 20 3-1溫飄光譜量測系統 20 3-1-1 量測系統架構 20 3-1-2 光路調整方法 21 3-1-3 光學系統要求 23 3-2 應力量測系統 26 3-2-1 顯微鏡干涉儀(MHT-Ⅲ WYKO) 工作原理[16] 26 3-2-2 WYKO系統架構與曲率量測 28 3-3 電子槍蒸鍍系統 30 3-4 DWDM濾光片製造流程 32 第四章 實驗結果與分析 34 4-1 量測薄膜線膨脹係數 34 4-2中心波長溫度飄移量與基板熱膨脹係數的關係 40 4-3 求解薄膜參數最佳值 45 第五章 結論 53 Conclusion 55 第六章 未來工作 57 參考文獻 58

    參考文獻
    [1] R. W. Hoffman, in physics of nonmetallic Thin Films, edited by C. H. S.Dupuy and A. Cachard, Plenum Press: New York, p.273, 1976.
    [2] “Generic Requirements for Fiber Optics Branching Components”, Bellcore
    GR-1209-CORE,Issue 2, February 1998.
    [3] H. Takashashi, “Temperature stability of thin-film narrow-bandpass filters produced by ion-assisted deposition”, SPIE Vol. 2253, pp. 1343-1353, 1994.
    [4] 李正中, “薄膜光學與鍍膜技術” ,第五版, 藝軒圖書出版社, p.214-231,(2006)
    [5] 朱正煒, “DWDM干涉濾光片之設計及製作”,光學工程第六十八期, 88年12月, P.40-45
    [6] 郭倩丞, “高密度分波多工器(DWDM)濾光片的應力與溫飄特性研究” ,國立中央大學光電所博士論文,民國96年
    [7] C. H. Hsueh and A. G. Evans, “Residual Stresses in Metal/Ceramic Bonded Strips”, J. Am. Ceram. Soc., 68, pp.241-248, 1985.
    [8] P. H. Townsend and D. M. Barnett, “Elastic relationships in layered composite media with approximation for the case of thin films on a thick substrate”, J. Appl. Phys. 62, pp.4438-4444, 1987.
    [9] Claude A. Klein, “How accurate are Stoney’s eqution and recent modifications”, J. Appl. Phys. 88, pp. 5487-5489, 2000
    [10] C. H. Hsueh, “Modeling of elastic deformation of multilayer due to residual stresses and external bending”, J. Appl. Phys. 91, pp.9652-9656, 2002.
    [11] S. Sakaguchi, ”Temperature Dependence of Transmission Characteristics of Multilayer Film Narrow Bandpass Filters” Jpn. J. Appl. Phys., Vol.38(1999), pp.6362-6368
    [12] Tei-Chen Chen, Ching-Jiung Chu, Chang-Hsien Ho, Chung-Chen Wu, and Cheng-Chung Lee“Determination of stress-optical and thermal-optical coefficients of Nb2O5 thin film material”J. Appl. Phys. 101, 043513 2007
    [13] 李正中, “薄膜光學與鍍膜技術” ,第五版, 藝軒圖書出版社, p.236-241,(2006)
    [14] Steven L. Prins, Alan C. Barron, William C. Herrmann, John R. McNeil, “Effect of stress on performance of dense wavelength division multiplexing filters: optical properties”, Appl. Opt.43, 626-632(2004)
    [15] Vittorio Bertogalli,E.U. Wagemann,EMMERICH Müller,Edgar Leckel, “Testing passive DWDM components:uncertainties in swept-wavelength measurement system”,OFC 2000.
    [16] Paul J. Caber, Stephen J. Martinek, Robert J.Neimann, “A new interferometric profiler for smooth and rough surfaces”, WYKO Corporation 2650 E. Elvira Road Tucson,AZ 85706.
    [17] de Lima MM, Lacerda RG, Vilcarromero J, Marques FC,” Coefficient of thermal expansion and elastic modulus of thin films ”, J.Appl. Phys. 86 (9): 4936-4942 NOV 1 1999
    [18] G.G. Stoney, “The tension of metallic films deposited by electrolysis,” Proc. R. Soc. London Ser. A 32,172-175 (1909).
    [19] I. H. MALITSON ,“Interspecimen Comparison of the Refractive Index of Fused Silica”, JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, VOLUME 55, NUMBER 10,pp.1205-1209
    [20] K. Fischer, J. Muller, R. Hoffmann, F. Wasse, and D. Salle,“ Elastooptical Properties of SiONLayers in an Integrated Optical Interferometer Used as a Pressure Sensor“, JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 12, NO. 1, JANUARY 1994, pp.163-169
    [21] W. Primak and D. Post,”Photoelastic Constants of Vitreous Silica and Its Elastic Coefficient of Refractive” J. Appl. Phys. 30, 779 1959.pp.779-786
    [22] B. Hunsche, M. Vergöhl, H. Neuhäuser, F. Klose, B. Szyszka, and T.Matthée, Thin Solid Films 392, 184-190 2001.
    [23] W. Lukosz, P. Pliska,” Determination of thickness, refractive indices, optical anisotropy of, and stresses in Si02 films on silicon wafers”, Optics Communications 117 (1995) l-7
    [24] Haruna Tada, Amy E. Kumpel, Richard E. Lathrop, and John B. Slanina,Patricia Nieva and Paul Zavracky,Ioannis N. Miaoulis and Peter Y. Wong,” Thermal expansion coefficient of polycrystalline silicon and silicon dioxide thin films at high temperatures” JOURNAL OF APPLIED PHYSICS, VOLUME 87, NUMBER 9,pp.4189-4193
    [25] Jie-Hua Zhao, Todd Ryan, Paul S. Ho,Andrew J. McKerrow and Wei-Yan Shih,” Measurement of elastic modulus, Poisson ratio, and coefficient of thermal expansion of on-wafer submicron films”, JOURNAL OF APPLIED PHYSICS, VOLUME 85, NUMBER 9,pp.6421-6424.
    [26] 藤井太一 座古 勝 “複合材料的破壞與力學” 劉松柏博士譯五南圖書出版股份有限公司 p.17-19 (2006)

    QR CODE
    :::