| 研究生: |
潘普翠 Putri Adhitana Paramitha |
|---|---|
| 論文名稱: |
透水性鋪面與傳統鋪面在高溫夏季情況下對氣溫與能源 消耗之影響-以國立中央大學圖書館為例 Permeable Pavement and Traditional Pavement Effect on Air Temperature and Energy Consumption during Hot Summer the Case of National Central University Main Library |
| 指導教授: |
林志棟
Jyh-Dong Lin |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 英文 |
| 論文頁數: | 126 |
| 中文關鍵詞: | 透水性鋪面 、氣溫 、能源使用 、DesignBuilder 、成本 |
| 外文關鍵詞: | Permeable pavement, air temperature, energy consumption, DesignBuilder, cost |
| 相關次數: | 點閱:5 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於都市化造成不透水鋪面的增加及減少自然土地並且減少反射率,增加了熱能
儲存及能源使用,而造成都市熱島效應。鋪面為都市熱島效應最顯著的影響,減緩熱島效應建議可使用涼鋪面及自然植物來達到環境涼化及節省能源。本研究的目的針對不同類型的透水性鋪面及不同的面積鋪設於建築物周圍,利用空氣和牆面溫度,計算建築物的能源使用,並與傳統的鋪路材料模擬結果進行成本比較。
本研究實驗區位於新北市新店區,量測參數包含四種材料(密級配瀝青混凝土
DGAC,透水瀝青混凝土PAC,植草磚GB 及透水連鎖磚PICB)表面溫度與氣象資料,並利用統計分析找出變數之間的相關性;本研究模擬案以國立中央大學圖書館為例,以Design Builder 程式模擬鋪面溫度,並將結果進一步以Design Builder Energy Plus 模擬建築能源使用並計算計算其成本。
研究結果顯示密級配瀝青混凝土表面溫度為最高,其影響室內和室外溫度,也增
加冷卻能源的使用。分析結果顯示使用透水性鋪面使用PAC 每年約可減少能源0.17%、GB 約可減少0.735%,而植被每年約可減少0.944%-1.132%。雖然透水性鋪面鋪設成本高於DGAC(PAC 53.2%,GB 86.4%,PI 46.4%),但能源使用之成本較低,與密級配瀝青混凝土總成本差異約可節省PAC 為2.319%、GB 為3.490%及PI 為1.700%。
The urbanization process increases artificial surfaces and less natural vegetation,decreases the albedo, increases metabolic heat and energy consumption, resulting in heat
island effect. Pavements are found to be a significant contributor to the Urban Heat Island.
Cool pavements and vegetation are suggested as a strategy to mitigate heat island effect bycooling the environment and saving energy. The purpose of this study is to discover the effect of different types of permeable pavement and different pavement area covering the building on air and wall temperature, building‘s cooling energy consumption, and the costs comparison of permeable pavements with conventional paving materials.
Four types of pavement (dense grade asphalt pavement/DGAC, permeable asphalt pavement/PAC, concrete, grass block/ GB, and permeable interlocking concrete block/PICB)from Xindian are used in simulation. Xindian site measurement is conducted to collect meteorological and pavement surface temperature data. Statistical analysis is used to find the
correlation between variables and to develop the pavement surface temperature model applied on National Central University (NCU) main library as the case study for the simulations using Computational Fluid Dynamics (CFD) simulation package in DesignBuilder. The result is
further used in the building energy consumption simulations using EnergyPlus in DesignBuilder, and then used to calculate the cost.
The result shows DGAC gives the highest temperature and impact on the outdoor and indoor temperature, and also increases cooling energy consumption. Analysis results showed differences caused by using permeable pavements or by increasing vegetation area. Utilizing permeable pavement can decrease energy consumption 0.170% (PAC) until 0.735% (GB) per year. And vegetation also can decrease 0.944%-1.132% per year. Even permeable installation cost is higher than DGAC (PAC 53.2%, GB 86.4%, PI 46.4%), energy efficiency cost make it cheaper. The total cost differences with DGAC is just 2.319% for PAC, 3.490% for GB, and 1.700% for PI.
[1] B. K. Ferguson, “Porous Pavements,” dalam Porous Pavements, United States of America, CRC Press, 2005.
[2] EPA, "EPA United States Environmental Protection Agency," 2012. [Online]. Available: http://www.epa.gov/hiri/. [Accessed 2012].
[3] C.-Y. Lin, “Urbanheatisland effect and its impact on boundary layer development and land–sea circulation over northern Taiwan,” ScienceDirect, vol. 42, no. 22, p. 5635–5649, 2008.
[4] A. J. B. Gordon M. Heisler, “The Urban Physical Environment: Temperature and Urban Heat Islands,” crop science, Vol. %1 dari %2978-0-89118-181-1, pp. 29-56, 2010.
[5] J. A. Voogt, “ Hotter Cities,” Urban Heat Islands, 2004.
[6] L. Gartland, “Heat Island: Understanding and Mitigating Heat in Urban Areas.,” Earthscan, UK, 2008.
[7] T. Oke, “ The Distinction between Canopy and Boundary-Layer Urban Heat Islands,” Atmosphere, vol. 14, p. 268–277, 1976.
[8] L. Kleerekoper dan M. v. Esch, “How to make a city climate-proof, addressing the urban heat island effect,” ScienceDirect, vol. 64, p. 30–38, 2012.
[9] R. Turk, “The Future of Green Building,” January 2010.
[10] i. c. t. liong, “preview of green building index Malaysia,” kulala lumpur, 2009.
[11] C. Nielson, “Green Building Guide,” dalam Rural Community Assistance Corporation, california, 2009.
[12] Architecture and Building Research Institute, , “Green Building Label,” Ministry of The Interior Taiwan, 2011. [Online]. Available: http://green.abri.gov.tw/art_1-2-en.php. [Diakses 23 November 2012].
[13] B. P. Taiwan, “Energy efficiency building standards in Taiwan”.
[14] A. K. a. M. S. Athienitis, Thermal Analysis and Design of Passive Solar Buildings, London: Science Publisher, 2002.
[15] Tianyu Xi, “Study on the outdoor thermal environment and thermal comfort around campus,” vol. 52, no. Building and Environtment, 2012.
[16] J.-T. Lee, “Study of Indoor Temperature and Comfort Index Effect by Air conditioning System,” 2012.
[17] Perrin Quarles Associates, “Reducing Urban Heat Islands: Compendium of Strategies,” p. 21, 2005.
[18] PAP, “porous pavements,” 2008.
[19] J.-D. Lin, “Study on the Design Guideline and Regulation of Rainwater Conservation and Infiltration Techniques at Building Site, Sub-project II: The Performance and Experimental Analysis of Porous Pavements,” 2003.
[20] M. Scholz dan P. Grabowiecki, “Review of permeable pavement systems,” vol. 42, 2007.
[21] Q. Government, “Dense Graded and Open Graded Asphalt,” dalam Dense Graded and Open Graded Asphalt Technical Standard, Queensland, Queensland Government, 2009.
[22] D. Ronca, “How Green Pavement Works,” HowStuffWorks, Inc, 1998-2013. [Online]. Available: http://science.howstuffworks.com/. [Diakses 1 May 2013].
[23] M. Carlowicz, “Ecosystem, Vegetation Affect Intensity of Urban Heat Island Effect,” Earth Science News Team Nasa, 15 December 2009 . [Online]. Available: http://www.nasa.gov/. [Diakses 1 May 2013].
[24] L. Pérez-Lombarda, J. Ortizb dan C. Pout, “A review on buildingsenergyconsumption information,” vol. 40, no. 3, 2007.
[25] WBCSD, “Energy Efficiency in Buildings,” World Business Council for Sustainable Development, Switzerland, 2005.
[26] M. Zhun Yu, “A systematic procedure to study the influence of occupant behavior on building energy consumption,” vol. 43, no. 6, 2011.
[27] H. MICHAEL J. SCOTT, “Effects of Climate Change on Commercial Building Energy Demand,” vol. 16, no. 3, 2007.
[28] K. Ruey-Lung Hwang, “Field experiments on thermal comfort in campus classrooms in Taiwan,” vol. 38, no. Enenrgy and Building, 2005.
[29] K. Riyanto, “Kajian Simulasi Bebean Thermal dan Analisis Energy Pada Rancangan Gedung Manufacturing Centra Research FT-UI dengan Sistem Tata Udara Variabel Air Volume Menggunakan EnergyPlus,” UI, Jakarta, 2011.
[30] “Wikipedia free ensiklopedi,” Wikimedia Foundation.inc, 30 5 2013. [Online]. Available: http://en.wikipedia.org/wiki/Energy_in_Taiwan. [Diakses 31 5 2013].
[31] C.-D. Yue dan S.-S. Wang, “GIS-based evaluation of multifarious local renewable energy sources: a case study of the Chigu area of southwestern Taiwan,” vol. 34, no. 6, 2006.
[32] “Design Builder,” DesignBuilder Software Ltd, 2005. [Online]. Available: http://www.designbuilder.co.uk/content/view/43/64/. [Diakses 9 06 2013].
[33] R. E. Schuler, “The economic impacts of a divisible-load permit system for heavy vehicles,” vol. 32, no. 2, 1998.
[34] S. Dikshit, “A Practical Guide to Cool Roofs and Cool Pavements,” 2011.
[35] P. David M. Pratt, “Three Types of Porous Pavements to Consider for LEED Buildings,” Expert Achieve Green Building, 2012. [Online]. Available: http://www.green-buildings.com/content/781799-porous-pavement-and-leed. [Diakses 14 March 2013].
[36] A. Citraningrum, “The Impact of Permeable Pavement Utilization on Air Temperature above the Pavement and Building Energy Consumption,” vol. 099, 2011.
[37] campbell scientific.inc, “campbell scientific,” campbell scientific.inc, 2013. [Online]. Available: http://www.campbellsci.com/cr10x. [Diakses 20 05 2013].
[38] R. L. Jan L.M Hensen, Building Performance Simulation for Design and Operation, New York: Spon Press, 2011.
[39] M. Kehrer, “Radiation Effects On Exterior Surfaces,” Institut Baupysik, 2008.
[40] P. S. Claire, “The Climates of Tall Building: An Investigation of Buildings Height in Bio-Climatic Design,” 24 February 2010. [Online]. Available: http://www.peterstclair.com/pdf/The-Climate-of-Tall-Buildings-Science-Review_LR.pdf. [Diakses 19 May 2013].
[41] “Taipeipower communication propaganda,” APIC (Asia PAcific Institute of Creativity), 2012. [Online]. Available: http://www.t-power.tw/ppt/TP%20PPT.pdf. [Diakses 30 5 2013].
[42] NASA, “NASA infrared processing analysis center,” [Online]. Available: http://coolcosmos.ipac.caltech.edu/cosmic_classroom/light_lessons/thermal/heat.html.
[43] M. Shahin, “Pavement M&R Budget Optimization Using The,” U.S. Army Engineer Waterways Experiment Stption, Texas, 1985.
[44] “Permeable Pavement Fact Sheet,” Information for Howard County, Maryland, 2007.