| 研究生: |
陳坤毅 Kun-Yi Chen |
|---|---|
| 論文名稱: |
固態氧化物燃料電池接合件熱機疲勞性質 Thermo-Mechanical Fatigue Properties of Joints in Solid Oxide Fuel Cell |
| 指導教授: |
林志光
Chih-Kuang Lin |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 96 |
| 中文關鍵詞: | 固態氧化物燃料電池 、封裝玻璃陶 、連接板 、熱機疲勞 |
| 外文關鍵詞: | Solid oxide fuel cell, Glass-ceramic sealant, Interconnect, Thermo-Mechanical Fatigue |
| 相關次數: | 點閱:15 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究目的在探討於固態氧化物燃料電池(SOFC)使用環境下,玻璃陶瓷接合劑和金屬連接板接合件的熱機疲勞性質與破裂模式,所使用的玻璃陶瓷為核能研究所開發代號為GC-9的材質,金屬連接板則是使用代號為Crofer 22 H 的商用肥粒鐵系不鏽鋼。分別在氧化及還原環境下,對接合件同時施予週期性的溫度以及剪力、張力的變動負載,以進行熱機疲勞實驗。
實驗結果顯示,剪力試片無論在空氣中的氧化環境或是濕氫氣體中的還原環境測試,其熱機疲勞壽命主要都是受到高溫區所受應力負載主導,壽命會隨著高溫(800 °C)施加負載的增加而減少。當在溫度達到高峰且施加應力負載為0.2倍的高溫剪力強度時,試片在兩種環境皆可以承受50個以上的熱機疲勞負載週期。而在熱機疲勞壽命中,試片在經歷795-800 °C頂溫區段的累積時間,與先前研究接合件在800 °C下的潛變壽命相當接近。從破斷面觀察,氧化環境實驗之試片多破裂於鉻酸鋇與玻璃膠的介面,而在還原環境多破裂於氧化鉻與玻璃膠的介面層。
張力試片在氧化與還原環境的測試結果,熱機疲勞壽命會隨著高溫(800 °C)施加的負載增加而減少。然而,張力的熱機疲勞壽命不只受到高溫區施加應力負載主導,也受到低溫區施加應力負載的影響,可能是因為玻璃膠在低溫時為脆性,對於張應力較為敏感所致。在氧化環境中,短壽命張力試片多破斷於玻璃膠內部與玻璃膠和氧化鉻介面;而經過數個熱機疲勞週期作用,鉻酸鋇生成於接合面外圍,破斷多發生於玻璃膠內部與鉻酸鋇和氧化鉻的介面層。而在還原環境中,試片都破斷於玻璃膠內部與氧化鉻及玻璃膠的介面。在本研究中,試片累積暴露於高溫區段氧化環境及還原環境的時間有限,故環境效應對於熱機疲勞壽命的影響並不顯著。
The objective of this study is to investigate thermo-mechanical fatigue (TMF) behavior and relevant fracture mode of a joint between a glass-ceramic sealant and an interconnect steel in solid oxide fuel cell (SOFC) operating environments. The materials used are a GC-9 glass-ceramic sealant developed at the Institute of Nuclear Energy Research (INER) and a commercial Crofer 22 H ferritic stainless steel. TMF test is conducted by applying a cyclic combined thermal and mechanical loading (shear or tensile mode) on the joint.
TMF life of shear specimen is increased with a decrease in applied stress level at peak temperature (800 °C) and is dominated by the applied stress level at peak temperature in both oxidizing environment (air) and reducing environment (humidified hydrogen). For applied shear stress of 0.2 joint strength ratio, the sample can run more than 50 TMF cycles. The accumulated time at high temperature (795-800 °C) in TMF test is comparable with the creep rupture time at 800 °C in both oxidizing and reducing environments for shear loading specimens. Based on the observation of fracture surface, fracture mainly occurred at the interface between barium chromate layer and glass-ceramic layer for the shear sample tested in oxidizing environment, while it mainly took place at the interface between chromia layer and glass-ceramic layer in reducing environment.
For tensile specimens, TMF life is also increased with a decrease in applied stress level at peak temperature (800 °C) in both oxidizing and reducing environment. However, TMF life under tensile loading is controlled not only by the stress level applied at peak temperature (800 °C) but also by the stress level applied at low temperature (40 °C). It might be due to that brittle glass-ceramic sealant is more sensitive to tensile stress at low temperature. For tensile specimens tested in oxidizing environment with a TMF life of several cycles, fracture occurred in the glass-ceramic layer and at the interface between BaCrO4 chromate layer and Cr2O3 chromia layer on the periphery of joint. For those tested in reducing environment, fracture all took place within the glass-ceramic and at the interface of Cr2O3 chromia layer and glass-ceramic layer. The environmental effect on TMF life is insignificant due to a limited exposure time at high temperature in both given environments.
1. A. Choudhury, H. Chandra, and A. Arora, “Application of Solid Oxide Fuel Cell Technology for Power Generation-a Review,” Renewable and Sustainable Energy Reviews, Vol. 20, pp. 430-442, 2013.
2. K. Kendall, N. Q. Minh, and S. C. Singhal, “Cell and Stack Designs,” Chapter 8 in High Temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications, edited by S. C. Singhal and K. Kendall, Elsevier, Kidlington, UK, 2003.
3. W. Z. Zhu and S. C. Deevi, “A Review on the Status of Anode Materials for Solid Oxide Fuel Cells,” Materials Science and Engineering: A, Vol. 362, pp. 228-239, 2003.
4. P. A. Lessing, “A Review of Sealing Technologies Applicable to Solid Oxide Electrolysis Cells,” Journal of Materials Science, Vol. 42, pp. 3465-3476, 2007.
5. J. W. Fergus, “Sealants for Solid Oxide Fuel Cells,” Journal of Power Sources, Vol. 147, pp. 46-57, 2005.
6. J. W. Fergus, R. Hui, X. Li, D. P. Wilkinson, and J. Zhang, Solid Oxide Fuel Cells: Materials Properties and Performance, CRC Press, New York, USA, 2008.
7. M. K. Mahapatra and K. Lu, “Glass-Based Seals for Solid Oxide Fuel and Electrolyzer Cells-a Review,” Materials Science and Engineering: R: Reports, Vol. 67, pp. 65-85, 2010.
8. K. D. Meinhardt, D. S. Kim, Y. S. Chou, and K. S. Weil, “Synthesis and Properties of a Barium Aluminosilicate Solid Oxide Fuel Cell Glass-Ceramic Sealant,” Journal of Power Sources, Vol. 182, pp. 188-196, 2008.
9. C.-K. Liu, T.-Y. Yung, and K.-F. Lin, “Effect of La Addition on the Thermal and Crystalline Properties of SiO2-B2O3-Al2O3-BaO Glasses,” Proceedings of the Annual Conference of the Chinese Ceramic Society (CD-ROM), 2007. (in Chinese)
10. C.-K. Liu, T.-Y. Yung, S.-H. Wu, and K.-F. Lin, “Study on a SiO2-B2O3-Al2O3-BaO Glass System for SOFC Applications,” Proceedings of the MRS_Taiwan Annual Meeting (CD-ROM), 2007. (in Chinese)
11. C.-K. Liu, T.-Y. Yung, and K.-F. Lin, “Isothermal Crystallization Properties of SiO2-B2O3-Al2O3-BaO Glass,” Proceedings of the Annual Conference of the Chinese Ceramic Society (CD-ROM), 2008. (in Chinese)
12. H.-T. Chang, “Hight-Temperature Mechanical Properties of a Glass Sealant for Solid Oxide Fuel Cell,” Ph.D. Thesis, Nation Central University, 2010
13. S. K. Weil, J. E. Deibler, J. S. Hardy, D. S. Kim, G.-G. Xia, L. A. Chick, and C. A. Coyle, “Rupture Testing as a Tool for Developing Planar Solid Oxide Fuel Cell Seals,” Journal of Materials Engineering and Performance, Vol. 13, pp. 316-326, 2004.
14. Z. Yang, K. D. Meinhardt, and J. W. Stevenson, “Chemical Compatibility of Barium-Calcium-Aluminosilicate-Based Sealing Glasses with the Ferritic Stainless Steel Interconnect in SOFCs,” Journal of the Electrochemical Society, Vol. 150, pp. A1095-A1101, 2003.
15. Z. Yang, “Chemical Interactions of Barium-Calcium-Aluminosilicate-Based Sealing Glasses with Oxidation Resistant Alloys,” Solid State Ionics, Vol. 160, pp. 213-225, 2003.
16. V. Haanappel, V. Shemet, I. Vinke, and W. Quadakkers, “A Novel Method to Evaluate the Suitability of Glass Sealant-Alloy Combinations under SOFC Stack Conditions,” Journal of Power Sources, Vol. 141, pp. 102-107, 2005.
17. P. Batfalsky, V. A. C. Haanappel, J. Malzbender, N. H. Menzler, V. Shemet, I. C. Vinke, and R. W. Steinbrech, “Chemical Interaction between Glass–Ceramic Sealants and Interconnect Steels in SOFC Stacks,” Journal of Power Sources, Vol. 155, pp. 128-137, 2006.
18. Y.-S. Chou, J. W. Stevenson, and P. Singh, “Effect of Pre-Oxidation and Environmental Aging on the Seal Strength of a Novel High-Temperature Solid Oxide Fuel Cell (SOFC) Sealing Glass with Metallic Interconnect,” Journal of Power Sources, Vol. 184, pp. 238-244, 2008.
19. Z. Yang, G. Xia, K. D. Meinhardt, S. K. Weil, and J. W. Stevenson, “Chemical Stability of Glass Seal Interfaces in Intermediate Temperature Solid Oxide Fuel Cells,” Journal of Materials Engineering and Performance, Vol. 13, pp. 327-334, 2004.
20. V. A. C. Haanappel, V. Shemet, S. M. Gross, T. Koppitz, N. H. Menzler, M. Zahid, and W. J. Quadakkers, “Behaviour of Various Glass-Ceramic Sealants with Ferritic Steels under Simulated SOFC Stack Conditions,” Journal of Power Sources, Vol. 150, pp. 86-100, 2005.
21. N. H. Menzler, D. Sebold, M. Zahid, S. M. Gross, and T. Koppitz, “Interaction of Metallic SOFC Interconnect Materials with Glass-Ceramic Sealant in Various Atmospheres,” Journal of Power Sources, Vol. 152, pp. 156-167, 2005.
22. C.-K. Lin, T.-T. Chen, Y.-P. Chyou, and L.-K. Chiang, “Thermal Stress Analysis of a Planar SOFC Stack,” Journal of Power Sources, Vol. 164, pp. 238-251, 2007.
23. J. Malzbender, J. Mönch, R. W. Steinbrech, T. Koppitz, S. M. Gross, and J. Remmel, “Symmetric Shear Test of Glass-Ceramic Sealants at SOFC Operation Temperature,” Journal of Materials Science, Vol. 42, pp. 6297-6301, 2007.
24. F. Smeacetto, M. Salvo, M. Ferraris, V. Casalegno, P. Asinari, and A. Chrysanthou, “Characterization and Performance of Glass-Ceramic Sealant to Join Metallic Interconnects to Ysz and Anode-Supported-Electrolyte in Planar SOFCs,” Journal of the European Ceramic Society, Vol. 28, pp. 2521-2527, 2008.
25. S. Celik, “Influential Parameters and Performance of a Glass-Ceramic Sealant for Solid Oxide Fuel Cells,” Ceramics International, Vol. 41, pp. 2744-2751, 2015.
26. J.-Y. Chen, “Analysis of Mechanical Properties for the Joint of Metallic Interconnect and Glass Ceramic in Solid Oxide Fuel Cell,” M.S. Thesis, National Central University, 2010.
27. Y.-A. Liu, “Environmental Effects on the Mechanical Properties of Joints in Solid Oxide Fuel Cell,” M.S. Thesis, National Central University, 2014.
28. J. Milhans, M. Khaleel, X. Sun, M. Tehrani, M. Al-Haik, and H. Garmestani, “Creep Properties of Solid Oxide Fuel Cell Glass-Ceramic Seal G18,” Journal of Power Sources, Vol. 195, pp. 3631-3635, 2010.
29. J. Milhans, D. S. Li, M. Khaleel, X. Sun, M. S. Al-Haik, A. Harris, and H. Garmestani, “Mechanical Properties of Solid Oxide Fuel Cell Glass-Ceramic Seal at High Temperatures,” Journal of Power Sources, Vol. 196, pp. 5599-5603, 2011.
30. K.-L. Lin, “Analysis of Creep Properties of Glass Ceramic Sealant and Its Joint Metallic Interconnect for Solid Oxide Fuel Cells,” M.S. Thesis, National Central University, 2012.
31. H.-L. Hsu, “Environmental Effects on the Creep Properties of Joints in Solid Oxide Fuel Cell,” M.S. Thesis, National Central University, 2015.
32. A. Selimovic, M. Kemm, T. Torisson, and M. Assadi, “Steady State and Transient Thermal Stress Analysis in Planar Solid Oxide Fuel Cells,” Journal of Power Sources, Vol. 145, pp. 463-469, 2005.
33. F. Smeacetto, A. Chrysanthou, M. Salvo, T. Moskalewicz, F. D'Herin Bytner, L. C. Ajitdoss, and M. Ferraris, “Thermal Cycling and Ageing of a Glass-Ceramic Sealant for Planar SOFCs,” International Journal of Hydrogen Energy, Vol. 36, pp. 11895-11903, 2011.
34. Y.-T. Chiu, “Creep and Thermo-Mechanical Fatigue Properties of Ferritic Stainless Steels for Use in Solid Oxide Fuel Cell Interconnect,” Ph.D. Thesis, National Central University, Taiwan, 2012.
35. C.-K. Liu, T-.Y. Yung, K.-F. Lin, R.-Y. Lee, and T.-S. Lee, Glass-Ceramic Sealant for Planar Solid Oxide Fuel Cells, United States Patent No. 7,897,530 B2, 2011.
36. J.-H. Yeh, “Analysis of High-Temperature Mechanical Durability for the Joint of Glass Ceramic Sealant and Metallic Interconnect for Solid Oxide Fuel Cell,” M.S. Thesis, National Central University, Jhong-Li, Taiwan, 2014.