| 研究生: |
蔡佩仰 Pei-Yang Cai |
|---|---|
| 論文名稱: | Methanol Decomposition on Pt nanoclusters supported by Graphene on Pt(111):A combined RHEED, IRAS and TPD study |
| 指導教授: |
羅夢凡
Meng-Fan Luo |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 英文 |
| 論文頁數: | 94 |
| 中文關鍵詞: | 甲醇分解 、白金(111) 、石墨烯 、高能電子繞射 、紅外光吸收儀 、熱程控脫附術 |
| 外文關鍵詞: | Methanol Decomposition, Pt(111), Graphene, RHEED, IRAS, TPD |
| 相關次數: | 點閱:16 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Pt金屬的奈米團簇利用蒸鍍的方法成長在 Pt(111) 為基底的石墨烯(graphene)上,利用高能電子繞射儀(reflection high energy electron diffraction, RHEED)來研究。我們發現 Pt 金屬的奈米團簇有很好的排列行為而且結構及晶格間距受到底層石墨烯的影響,經由高能電子繞射儀的結構研究,我們發現石墨烯會以非常多不同的方向生長,其中主要的方向是石墨烯晶格平行於 Pt(111) 晶格,和一個次要方向石墨烯晶格與 Pt(111) 晶格相差30°。Pt 金屬的奈米團簇是 fcc 的結構並且沿著平行 Pt(111) 表面以 (111) 面方向成長,Pt 金屬的奈米團簇會也會隨著石墨烯以非常多不同的方向生長的,但有一個主要方向是 [11-2] 方向平行於 Pt(111) 的 [11-2] 方向。而 Pt 金屬奈米團簇在表面法向量方向的晶格常數(4.02 – 4.34 Å)相對於 fcc 結構的 Pt 塊材(3.92 Å)較為膨脹,這樣會使 Pt 金屬奈米團簇的 (111) 面有比較好的晶格去吻合表面的石墨烯。晶格常數會因鍍量而有所下降,但不會隨退火溫度改變。
我們利用熱脫附質譜術及反射式紅外線光譜吸收儀來研究甲醇於白金奈米粒子上的分解反應之觸媒模型。從 IR 吸收光譜上以 CO 作為探測物的結果發現 CO 傾向於吸附在 Pt 奈米粒子的 on-top site 上,沒有其他像是 bridge或是 hollow的吸附被探測到。由 被探測到。由 CO 的 TPD脫附譜線則顯示CO 的脫附有兩個峰值:一位於 390 K(在 Pt 單晶上也有出現),一個則位於 470 K(我們認為是來自於較小的 Pt 奈米粒子上脫附的 CO )。
然而,無論反射式紅外線光譜及熱脫附質譜術的結果都指出,單層吸附的甲醇會在 136 K 左右完全脫附光,低於甲醇分解反應在 Pt(111) 單晶的溫度(200 K). 沒有任何甲醇分解反應的產物被偵測到,暗示著甲醇在以石墨烯/ Pt(111) 為基底上的白金奈米粒子上不會進行分解反應。
The Pt nanoclusters grown from vapor deposition on single layer graphene have been studied by reflection high energy electron diffraction (RHEED). The results show that the Pt nanoclusters are highly crystalline and their structures and lattice constant are significantly affected by the graphene/Pt(111) substrate. Structural analysis based on the RHEED patterns indicates that graphene grow with varied orientations but two are primary: graphene[1000]//Pt(111)[11-2] and graphene[1-100]//Pt(111)[11-2]. Pt nanoclusters grew as fcc phase, with their (111) facets parallel to the graphene surface and with varied orientations with respect to graphene/Pt(111); the primary one has its [11-2] direction parallel to [11-2] direction of Pt(111), denoted as Pt(111) clusters [11-2]//Pt(111)[11-2]. The clusters grew with two kinds. Their orientations differ by 60˚ from each other. Since fcc Pt clusters in (111) orientation has six-fold symmetry, the two kinds of clusters are at the same orientation with respect to the substrate. The lattice constant of the Pt nanoclusters is expanded only in surface normal direction (4.02 – 4.34 Å), relative to that of fcc bulk Pt (3.92 Å). The lattice constant decreases with the coverages, but indenpent of annealing temperature.
Methanol decomposition on Pt nanoclusters supported by graphene as a model system is studied by IRAS and TPD. The study contained two parts: surface structures of Pt clusters probe with CO and methanol decomposition on Pt nanoclusters. The IRAS spectra with CO as a probe show that the CO adsorbed on on-top site of Pt nanoclusters; no other site such as bridge or hollow site have been detected. The CO TPD spectra show that CO desorbed with two distinct peaks, one at 390 K for CO on terrace sites, which is observed for CO on Pt single crystal results and the other at about 470 K for CO on low-coordinated site, which is observed for CO on small Pt clusters. Both IRAS and TPD spectra for methanol experiments show that the monolayer methanol on the clusters compeletly desorb about 136 K, significantly lower than that for methanol desorption from Pt(111) single crystal (170 K) and also that for methanol decomposition on Pt(111) single crystal (200 K). No CO and hydrogen produced from decomposition is detected, indicating that methaol on the Pt nanoclusters on graphene/Pt(111) does not decompose.
[1.1] N. Kizhakevariam and E.M. Stuve, Surf. Sci. 286, 246 (1993)
[1.2] B.A. Sexton, Surf. Sci. 102, 271 (1981)
[1.3] Iva Matolínová,, Viktor Johánek, Josef Mysliveček, Kevin C. Prince, Tomáš Skála, Michal Škoda, Nataliya Tsud, Mykhailo Vorokhta and Vladimír Matolín, Surf. Interface Anal. 43, 1325 (2010)
[1.4] A. P. Alivisatos, Science. 271, 933 (1996)
[1.5] R. E. Palmer, New Sci. 2070, 38 (1996)
[1.6] M. Baumer, H. J. Freund, Prog. Surf. Sci. 61, 127 (1999)
[1.7] G. P. Lopinski, V. I. Merkulov, J. S. Lannin, Phys. Rev. Lett. 80, 4241 (1998)
[1.8] C. R. Henry, Sruf. Sci. Rep. 31, 231 (1998)
[1.9] M. Haruta, Catal. Today 36, 153 (1997)
[1.10] M. Valden, X. Lai, D. W. Goodman, Science 281, 1647 (1998)
[1.11] Chen-Sheng Chao, Methanol Decomposition on Pt Nanoparticles supported by Al2O3/NiAl(100): A combined IRAS and TPD study. Master thesis, (2012).
[2.1] Peter Sutter, Jerzy T. Sadowski and Eli Sutter, Phys. Rev. B. 80, 245411 (2009).
[2.2] J. S. Bunch, S. S. Verbridge, J. S. Alden, A. M. van der Zande, J. M. Parpia, H. G. Craighead, and P. L. McEuen, Nano Lett. 8, 2458 (2008).
[2.3] J. Coraux, A. T. N’Diaye, M. Engler, C. Busse, D. Wall, N. Buckanie, F. J. Meyer zu Heringdorf, R. van Gastel, B. Poelsema, and T. Michely, New J. Phys. 11, 039801 (2009).
[2.4] M. Gao, Y. Pan, L. Huang, H. Hu, L. Z. Zhang, H. M. Guo, S. X. Du and H.-J. Gao, Appl. Phys. Lett. 98, 033101 (2011).
[2.5] H. Ueta, M. Saida, C. Nakai, Y. Yamada, M. Sasaki, and S. Yamamoto, Surf. Sci. 560, 183 (2004).
[2.6] E. Loginova, N. C. Bartelt, P. J. Feibelman, and K. F. McCarty, New J. Phys. 11, 063046 (2009).
[2.7 ] Y. Pan, H. G. Zhang, D. X. Shi, J. T. Sun, S. X. Du, F. Liu, and H. J. Gao, Adv. Mater. 21, 2777 (2009).
[2.8] A. T. N’Diaye, J. Coraux, T. N. Plasa, C. Busse, and T. Michely, New J. Phys. 10, 043033 (2008).
[2.9] S. Marchini, S. Günther and J. Wintterlin, Phys. Rev. B. 76, 075429 (2007).
[2.10] M. J. Van Staden and J. P. Roux, Appl. Surf. Sci. 44, 259 (1990).
[2.11] D. W. Goodmann and J. M. White, Surf. Sci. Lett. 90, 201 (1979).
[2.12] L. E. Davis, N. C. MacDonald, P. W. Palmberg, G. E. Riach, and R. E.Weber, Handbook of Auger Electron Spectroscopy, 2nd ed. (Perkin Elmer, Eden Prairie, MN, 1978).
[2.13] 16 J. Tersoff, Phys. Rev. Lett. 57, 440 (1986).
[2.14] F. J. Himpsel, K. Christmann, P. Heimann, D. E. Eastman, and P. J. Feibelman, Surf. Sci. 115, L159 (1982).
[2.15] T. A. Land, T. Michely, R. J. Behm, J. C. Hemminger, and G. Comsa, Surf. Sci. 264, 261 (1992).
[2.16] Zhu Liang, Homa Khosravian, Alexander Uhl, Randall J. Meyer, Michael Trenary, Surf. Sci. 606, 1643-1648 (2012).
[2.17] J. Lahiri, Y. Lin, P. Bozkurt, I.I. Oleynik, M. Batzill, Nat. Nanotechnol. 5, 326 (2010).
[2.18] K.A. Ritter, J.W. Lyding, Nat. Mater. 8, 235 (2009).
[2.19] T. Michely, M. Hohage, M. Bott, G. Comsa, Phys. Rev. Lett. 70, 3943 (1993).
[2.20] S. Liu, Z. Zhang, G. Comsa, H. Metiu, Phys. Rev. Lett. 71, 2967 (1993).
[2.21] G.B. Fisher and J.L. Gland, Surface Sci. 94, 446 (1980).
[2.22] K. Christmann, G. Ertl and T. Pignet, Surface Sci. 54, 365 (1976).
[2.23] R.W. McCabe and L.D. Schmidt, Surface Sci. 65, 189 (1977).
[2.24] K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds (Wiley, New York, 1978).
[2.25] B.A. Sexton, Surface Sci. 88, 299 (1979).
[2.26] J.E. Demuth, H. Ibach and S. Lehwald, Phys. Rev. Letters. 40, 1044 (1978).
[2.27] G.B. Fisher, T.L. Madey, B.J. Waclwaski and J.T. Yates, in: Proc. 7th Intern. Vacuum Congr. and 3rd Intern. Conf. on Solid Surfaces, Vienna, 1977, Vol. II, p. 1071.
[2.28] A.M. Baro and H. Ibach, J. Chem. Phys. 71, 4812 (1979).
[2.29] J.L. Gland, B.A. Sexton and G.B. Fisher, Surface Sci. 95, 587 (1980).
[2.30] G.B. Fisher and B.A. Sexton, Phys. Rev. Letters. 44, 683 (1980).
[2.31] A.M. Baro, H. Ibach and H.D. Bruchmann, Surface Sci. 88, 384 (1979).
[3.1] Peter J. Dobson, An Introduction to Reflection High Energy Electron Diffraction.
[3.2] Elaine M. McCash, Surface Chemistry.
[3.3] John B. Hudson, Surface Science: An Introduction.
[3.4] 行政院國家科學委員會精密儀器發展中心, 真空技術與應用.
[3.5] R. Franchy, Surface Science Reports 38 (2000) 195-294.
[3.6] M.S. Zei, C.S. Lin, W.H. Wen, C.I. Chiang, M.F. Luo, Surf. Sci. 600 (2006) 1942-1951.
[3.7] Elaine M. McCash, Surface Chemistry, Oxford University Press (2001).
[3.8] John B. Hudson, Surface Science: an introduction, J.Wiley & Sons (1998).
[3.9] P.Hollins and J. Pritchard, Prog. Surf, Sci. 19, 275 (1985).
[3.10] F.M. Hoffmann, Surf. Sci. Rep. 3, 107 (1982).
[3.11] A.M. Bradshaw, E. Schweizer, Infrared reflection absorption spectroscopy of adsorbed molecules, in: R.E. Hester(Ed.), Advances in Spectroscopy: Spectroscopy of Surfaces, Wiley, New York (1988).
[3.12] R. G. Greenler, J. Chem. Phys., 44, 310 (1966).
[3.13] Marcus Bäumer, H.-J. Freund, Progress in Surf. Sci. 61, 127 (1999).
[3.14] ABB FT-IR reference manual.
[3.15] 李冠卿, 近代光學, 聯經出版社 (1988).
[4.1] Sam Zhang, Nanostructured Thin Films and Coatings: Mechanical Properties, CRC Press (2010), p358.
[4.2] Mahmood Aliofkhazraei, Nasar Ali, William I. Milne, Cengiz S. Ozkan, Stanislaw Mitura, Juana L. Gervasoni, Graphene Science Handbook: Size-Dependent Properties, CRC Press (2016), p105 ~ p106.
[4.3] C. Heske, R. Treusch, F. J. Himpsel, S. Kakar, L. J. Terminello, H. J. Weyer, and E. L. Shirley, Phys. Rev. B. 59, 4680 (1999).
[4.4] Matthew J. Lundwall, Sean M. McClure, and D. Wayne Goodman, J. Phys. Chem. 114, 7904 (2010)
[4.5] Luca Vattuone, Letizia Savio, Mario Rocca, Surf. Sci. Rep. 63, 101 (2008)
[4.6] A.M. Bradshaw, E. Schweizer, Infrared reflection absorption spectroscopy of adsorbed molecules, in: R.E. Hester(Ed.), Advances in Spectroscopy: Spectroscopy of surfaces, Wiley, New York (1988)
[4.7] H. Steininger, S. Lehwald, and H. Ibach, Surf. Sci. 123, 264 (1982)
[4.8] Chen-Sheng Chao, Methanol Decomposition on Pt Nanoparticles
supported by Al2O3/NiAl(100): A combined IRAS and TPD study. Master thesis, (2012).