跳到主要內容

簡易檢索 / 詳目顯示

研究生: 邱梓雯
Tzu-Wen Chiu
論文名稱: 具備表面電漿共振的紫外光發光二極體
The Ultraviolet Light Emitting Diode with Surface Plasmon Resonance
指導教授: 賴昆佑
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 65
中文關鍵詞: 表面電漿共振發光二極體紫外光
相關次數: 點閱:8下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在過去的二十年中, InGaN-GaN 量子井 (QW) 的發光二極管 LED獲得了巨大的商機,並有望最終取代白熾燈泡。然而,紫外 (UV) LED 的量子效率,特別是在 300 nm 以下的波長,仍低於 15%,阻礙了氮化物紫外 LED 的商業化。
      在這項研究中,我們利用數值模擬的方式,分析量子井與金屬(Al)的表面電漿(surface plasmon resonance, SPR)耦合效率,目的是要設計具有更高量子效率的 UV LED 元件結構。我們發現,當Al與量子井的距離在 1 nm 的時候,量子井與Al有最強的 SPR耦合效率。為了製造UV LED元件,我們透過改變乾蝕刻時間的方式,嘗試了不同深度的p-n介面,發現當刻蝕深度為 400 nm 時,可以得到接近p-n介面的 I-V 曲線。雖然這些元件沒有產生預期的紫外光,本研究將分析元件量測的結果,也會提出解決問題的對策。


    Light-emitting diode LEDs based on InGaN-GaN quantum wells (QWs) have been a huge commercial success for the past two decades, and are expected to eventually replace the incandescent light bulbs. However, the quantum efficiencies of ultraviolet (UV) LEDs, particularly at the wavelengths below 300 nm are still lower than 15 %, preventing the commercialization of nitride UV LEDs.
    In this study, we employed numerical simulation to evaluate the effect of surface plasmon resonance (SPR) on nitride UV LEDs (λ = 250 nm) by varying the distance (from 0.5 nm to 6 nm) between the quantum well and the metal (Al) layer. The goal is to design the device structure of a UV LED with improved quantum efficiency. The highest SPR intensity was achieved at the separation distance of 1 nm, indicating the efficient coupling between the QW and the Al electrode. In device fabrication, we optimized the etching depth of the light-emitting mesa, and obtained the P-N junction I-V curves at the etching depth of 400 nm. Although the device did not deliver the expected UV light, detailed analyses and suggestions for future work will be provided.

    論文摘要..................................................................i Abstract .................................................................. ii 致謝............................................................... iii 目錄 ..................................................................... v 圖目錄 ...................................................................vi 表目錄 ...................................................................xi 第一章、緒論 ............................................................ 1 1.1 深紫外光發光二極體的發展與技術瓶頸 ............................ 1 1.2 表面電漿的原理及應用 .......................................... 1 1.3 研究動機與章節架構 ............................................ 6 第二章、實驗原理、方法與儀器 ........................................... 8 2.1 模擬計算及流程 ................................................ 8 2.2 黃光微影製程 .................................................. 8 2.3 儀器與實驗步驟介紹 ........................................... 11 2.3.1 有機金屬化學氣相沉積機台(MOCVD) ......................... 11 2.3.2 光罩對準曝光機(Karlsuss Aligner MA6) ..................... 13 2.3.3 金屬乾式蝕刻機(ICP) ...................................... 16 2.3.4 高真空電子束暨熱阻式蒸鍍機(E-gun&Thermal) ................ 19 2.3.5 快速退火爐(ARTs-RTA) .................................... 22 2.3.6 電流電壓測試(IV) ......................................... 24 2.4 磊晶結構 .................................................. .26 第三章、分析與討論 ........................................................................................................... 27 3.1 Cap Layer 厚度的影響 ......................................... 27 3.2 不同波長下的電場響應 ......................................... 33 3.3 蝕刻深度的影響 ............................................... 35 vi 第四章、結論與未來發展 ................................................................................................. 46 4.1 結論 ......................................................... 46 4.2 未來發展 ..................................................... 46

    1. The electromagnetic spectrum, Available at:
    https://bestlight.io/blogs/news/92100353-what-are-ultraviolet-lightsgood-
    for
    2. Application of UVA,UVB,UVC, Available at:
    https://www.idealab.rocks/en_US/wettbewerbe/leds-clean-our-water/
    3. 2018 紫外線LED 應用市場報告-固化、醫療、殺菌
    Available at: https://kknews.cc/news/22ngvzg.html。
    4. 吳民耀,劉威志,“表面電漿子理論與模擬,”物理雙月刊 28,
    486-496 (2006)。
    5. Choi R. Current status and future works of high-power deep UV
    LEDs. Proc. SPIE 10104 (2017).
    6. LG Innotek unveils the world’s first ‘100 mW’ UV-C LED. Korea
    company (2017). Available at:
    https://www.led-professional.com/products/uv-ir-components/lginnotek-
    unveils-the-world2019s-first-100mw-uv-c-led
    7. Reentil¨a O, Brunner F, Knauer A, Mogilatenko A, Neumann W,
    Protzmann H, Heuken M, KneisslM, Weyers M and Tr¨ankle G.
    Journal of Crystal Growth 310,4932(2008).
    8. Kueller V et al. IEEE Photonics Technology Letters 24,1603 (2012).
    9. S. Chichibu, T. Azuhata, T. Sota, and S. Nakamura, Appl. Phys. Lett.
    69, 4188 (1996) .
    10. Y. Narukawa, Y. Kawakami, M. Funato, Sz. Fujita, Sg. Fujita, and S.
    Nakamura, Appl. Phys. Lett. 70, 981 (1997) .
    11. 3T. Kawashima, H. Yoshikawa, S. Adach, S. Fuke, and K. Ohtsuk, J.
    Appl.Phys. 82, 3528 (1997).
    12. Koichi Okamoto, Isamu Niki, and Axel , Appl. Phys. Lett. 87, 071102
    (2005)
    13. Miao, P., Wu, L. and Peng, L. IEEE Xplore. 10,1109 (2014).
    14. Mesleh, R., Elgala, H. and Haas, H. Journal of Optical
    Communications and Networking. 4,865 (2012).
    15. Dimitrov, S., Sinanovic, S. and Haas, H. IEEE Transactions on
    Communications. 60,1072 (2012).
    16. Mohamed Sufyan Islim, Photonics Research. 5, A35(2017).
    17. Koichi,O.,Isamu N,.Alexander S. Nature Materials. 3,601 (2004).

    QR CODE
    :::