| 研究生: |
吳緯綸 Wei-Lun Wu |
|---|---|
| 論文名稱: |
兩階段適應性無縫設計改良-於劑量選擇後加入一新試驗組之調整 |
| 指導教授: | 曾議寬 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 統計研究所 Graduate Institute of Statistics |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 122 |
| 中文關鍵詞: | 適應性設計 、無縫二三期設計 、封閉檢定法 、早期終點 、晚期終點 、逆常態加權組合函數 |
| 外文關鍵詞: | adaptive design, seamless design, closed testing procedure, short-term outcome, long-term outcome, weighted inverse normal combination function |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在臨床試驗的發展中,適應性無縫設計包含兩個階段,學習階段(二期階段)選擇劑量或試驗組,確認階段(三期階段)確認所選劑量或試驗組的治療效果。由於在一個方案中結合傳統的二三期試驗,以至於有可能可以縮短新藥開發所需要的時間而備受製藥公司關注。本研究提出一個除了在二期階段結束時,基於短期終點選擇一個試驗組外,並增加一個新的試驗組在三期階段的無縫設計。在最終分析時,利用封閉檢定法控制由於劑量選擇造成可能的總體型一錯誤率膨脹,另外使用逆常態加權組合函數結合兩階段基於入組受試者晚期終點所得到p值以進行統計推論。本研究提出依序檢定與同時檢定兩種檢定策略,依序檢定首先檢定二期階段選出的試驗組,若達顯著則再檢定新增的試驗組;同時檢定則同時檢定兩個試驗組。本研究透過大量的模擬,以驗證此設計在不同情境下能控制總體型一錯誤率並達到足夠的檢定力。
In the development of clinical trial design, adaptive seamless design contains learning stage and confirmatory stage corresponding to conventional phase Ⅱ/Ⅲ trial respectively. Typically, experimental groups as doses of test drug or treatment groups compared to an active control are evaluated at the learning stage, based on the results of the learning stage, the efficacy of selected dose or treatment group is to be confirmed at the confirmatory stage. As adaptive seamless design combines conventional phase Ⅱ/Ⅲ trial into a trial design, it might shorten time needed to develop new drugs, which has drawn considerable attention from researchers and pharmaceutical companies. We proposed a seamless design which is able to select an experimental group at the end of learning stage based on short-term outcome and to add a new experimental group into confirmatory stage. The closed testing procedure and weighted inverse normal combination function are used to control the inflation of overall type I error rate due to dose selection and p-values from two stage subjects at the final analysis. We proposed sequentially and simultaneously testing strategy for testing the new experimental group. Sequentially testing strategy tests the selected experimental group first, if significant then test the new experimental group. Simultaneously testing strategy tests the selected and new experimental groups at the same time. Numerical simulation has been conducted to verify the type I error rate and power under several scenarios.
Barkhof, F., Calabresi, P. A., Miller, D. H., & Reingold, S. C. (2009). Imaging outcomes for neuroprotection and repair in multiple sclerosis trials. Nature Reviews Neurology, 5, 256–266.
Bauer, P., & Rohmel J. (1995). An adaptive method for establishing a dose-response relationship. Statistics in Medicine, 14, 1595-1607.
Bauer, P. (1989). Multistage testing with adaptive designs. Biometrie und Informatik in Medizin und Biologie, 20, 130-148.
Bauer, P., & Kieser, M. (1999). Combining different phases in the development of medical treatments within a single trial. Statistics in Medicine, 18, 1833-1848.
Bauer, P., & Kohne, K. (1994). Evaluation of Experiments with Adaptive Interim Analyses. Biometrics, 50, 1029-1041.
Berg, K., Pedersen, T. R., Sandvik, L., & Bragadóttir, R. (2015). Comparison of Ranibizumab and Bevacizumab for Neovascular Age-Related Macular Degeneration According to LUCAS Treat-and-Extend Protocol. Ophthalmology, 122, 146-152.
Bermel, R. A., & Bakshi, R. (2006). The measurement and clinical relevance of brain atrophy in multiple sclerosis. The Lancet Neurology, 5, 158-170.
Biswas, P., Sengupta, S., Choudhary, R., Home, S., Paul, A., & Sinha, S. (2011). Comparative role of intravitreal ranibizumab versus bevacizumab in choroidal neovascular membrane in age-related macular degeneration. Indian Journal of Ophthalmology, 59(3), 191-196.
Bonferroni, C. E. (1936). Teoria statistica delle classi e calcolo delle probabilità. Pubblicazioni del R Istituto Superiore di Scienze Economiche e Commerciali di Firenze.
Brannath W, Koening F, & Bauer P. (2003). Improved repeated confidence bounds in trials with a maximal goal. Biometrical Journal, 45, 311-324.
Bretz, F., Koenig, F., Brannath, W., Glimm, E., & Posch, M. (2009). Adaptive designs for confirmatory clinical trials. Statistics in Medicine, 28(8), 1181-1217.
Bretz, F., Schmidli, H., König, F., Racine, A., & Maurer, W. (2006). Confirmatory Seamless Phase II/III Clinical Trials with Hypotheses Selection at Interim: General Concepts. Biometrical Journal, 48(4), 623-634.
Brown, D. M., Michels, M., Kaiser, P. K., Heier, J. S., Sy, J. P., & Ianchulev, T. (2009). Ranibizumab versus Verteporfin Photodynamic Therapy for Neovascular Age-Related Macular Degeneration: Two-Year Results of the ANCHOR Study. Ophthalmology, 116(1), 57-65.
Chakravarthy, U., Harding, S. P., Rogers, C. A., Downes, S. M., Lotery, A. J., Culliford, L. A., & Reeves, B. C. (2013). Alternative treatments to inhibit VEGF in age-related choroidal neovascularisation: 2-year findings of the IVAN randomised controlled trial. The Lancet, 382(9900), 1258-1267.
Chang, M., & Chow, S.-C. (2005). A Hybrid Bayesian Adaptive Design for Dose Response Trials. Journal of Biopharmaceutical Statistics, 15(4), 677-691.
Chow, S.-C., Chang, M., Pong, A. (2005). Statistical consideration of adaptive methods in clinical development. Journal of Biopharmaceutical Statistics, 15,575-591.
Chow, S.-C., & Chang, M. (2008). Adaptive design methods in clinical trials – a review. Orphanet Journal of Rare Diseases, 3(1), 3-11.
Chuang-Stein, C., Anderson, K., Gallo, P., & Collins, S. (2006). Sample Size Reestimation: A Review and Recommendations. Drug Information Journal, 40(4), 475-484.
Cui, L., Hung, H. M. J., & Wang, S.-J. (1999). Modification of Sample Size in Group Sequential Clinical Trials. Biometrics, 55(3), 853–857.
Efron, B. (1971). Forcing a sequential experiment to be balanced. Biometrika, 58,403-417.
FDA. (1997). E8 General Considerations for Clinical Trials.
FDA. (2019). Adaptive Designs for Clinical Trials of Drugs and Biologics: Guidance for Industry.
Filippi, M., Rocca, M. A., Martino, G., Horsfield, M. A., & Comi, G. (1998). Magnetization transfer changes in the normal appering white matter precede the appearance of enhancing lesions in patients with multiple sclerosis. Annals of Neurology, 43(6), 809-814.
Follmann, D. A., Proschan, M. A., & Geller, N. L. (1994). Monitoring Pairwise Comparisons in Multi-Armed Clinical Trials. Biometrics, 50(2), 325-336.
Friede, T., & Kieser, M. (2004). Sample size recalculation for binary data in internal pilot study designs. Pharmaceutical Statistics, 3(4), 269-279.
Friede, T., Parsons, N., Stallard, N., Todd, S., Valdes Marquez, E., Chataway, J., Nicholas, R. (2011). Designing a seamless phase II/III clinical trial using early outcomes for treatment selection: an application in multiple sclerosis. Statistics in Medicine, 30, 1528-1540.
Gallo, P., Chuang-Stein, C., Dragalin, V., Gaydos, B., Krams, M., & Pinheiro, J. (2006). Adaptive Designs in Clinical Drug Development-An Executive Summary of the PhRMA Working Group. Journal of Biopharmaceutical Statistics, 16(3), 275-283.
Hardwick, J., & Stout, Q. F. (2002). Optimal few-stage designs. Journal of Statistical Planning and Inference, 104(1), 121-145.
Hellmich, M. (2001). Monitoring clinical trials with multiple arms. Biometrics, 57, 892-898.
Ho, T. W., Pearlman, E., Lewis, D., Hämäläinen, M., Connor, K., Michelson, D, Zhang, Y., Assaid, C., Mozley, L. H., Strickler N. Bachman R., Mahoney, E., Lines, C., Hewtt D. J. (2012). Efficacy and tolerability of rizatriptan in pediatric migraineurs: Results from a randomized, double-blind, placebo-controlled trial using a novel adaptive enrichment design. Cephalalgia, 32(10), 750-765.
James Hung, H. M., Cui, L., Wang, S.-J., & Lawrence, J. (2005). Adaptive Statistical Analysis Following Sample Size Modification Based on Interim Review of Effect Size. Journal of Biopharmaceutical Statistics, 15(4), 693-706.
Jennison, C., & Turnbull, B. W. (2005). Meta-Analyses and Adaptive Group Sequential Designs in the Clinical Development Process. Journal of Biopharmaceutical Statistics, 15(4), 537-558.
Jennison, C., & Turnbull, B. W. (1999). Group Sequential Methods with Applications to Clinical Trials. CRC Press
Kelly, P. J., Stallard, N., & Todd, S. (2005). An Adaptive Group Sequential Design for Phase II/III Clinical Trials that Select a Single Treatment From Several. Journal of Biopharmaceutical Statistics, 15(4), 641-658.
Kodjikian, L., Souied, E. H., Mimoun, G., Mauget-Faÿsse, M., Behar-Cohen, F., Decullier, E., & Aulagner, G. (2013). Ranibizumab versus Bevacizumab for Neovascular Age-related Macular Degeneration: Results from the GEFAL Noninferiority Randomized Trial. Ophthalmology, 120(11), 2300-2309.
Koenig, F., Brannath, W., Bretz, F., & Posch, M. (2008). Adaptive Dunnett tests for treatment selection. Statistics in Medicine, 27(10), 1612-1625
Krebs, I., Schmetterer, L., Boltz, A., Told, R., Vécsei-Marlovits, V., & Egger, S. (2013). A randomised double-masked trial comparing the visual outcome after treatment with ranibizumab or bevacizumab in patients with neovascular age-related macular degeneration. British Journal of Ophthalmology, 97(3), 266-271.
Kurtzke, J. F. (1983). Rating neurologic impairment in multiple sclerosis: An expanded disability status scale (EDSS). Neurology, 33(11), 1444-1444.
Kwon, O.W., Lee,F. L., Chung H., Lai, C. C., Sheu S. J., & Yoon, Y. H. (2012). EXTEND III: Efficacy and safety of ranibizumab in South Korean and Taiwanese patients with subfoveal CNV secondary to AMD. Graefes Arch Clin Exp Ophthalmol 250, 1467-1476.
Lachin, J. M. (1988). Statistical properties of randomization in clinical trials. Controlled Clinical Trials, 9(4), 289-311.
Lan, K. K. G., & Demets, D. L. (1989). Group sequential procedures: Calendar versus information time. Statistics in Medicine, 8(10), 1191-1198.
Lehmacher, W., & Wassmer, G. (1999). Adaptive Sample Size Calculations in Group Sequential Trials. Biometrics, 55, 1286-1290.
Liu, Q., & Chi, G. Y. H. (2001). On sample size and inference for two-stage adaptive designs. Biometrics, 57, 172-177.
Liu, Q., & Proschan, M.A., & Pledger, G. W. (2002). A unified theory of two-stage adaptive designs. Journal of American Statistical Association, 97, 1034-1041.
Maca, J., Bhattacharya, S., Dragalin, V., Gallo, P., & Krams, M. (2006). Adaptive Seamless Phase II/III Designs—Background, Operational Aspects, and Examples. Drug Information Journal, 40(4), 463-473.
Magnusson, B. P., & Turnbull, B. W. (2013). Group sequential enrichment design incorporating subgroup selection. Statistics in Medicine, 32(16), 2695-2714.
Marcus, R., Peritz, E., & Gabriel, K. R. (1976). On Closed Testing Procedures with Special Reference to Ordered Analysis of Variance. Biometrika, 63(3), 655-660
Martin, D. F., Maguire, M. G., Fine, S. L., Ying, G. S., Jaffe, G. J., Grunwald, J. E., Toth, C., Redford, M., & Ferris, F.L. 3rd. (2012). Ranibizumab and bevacizumab for treatment of neovascular age-related macular degeneration: two-year results. Ophthalmology, 119(7), 1388-98.
Nguyen Duc, A., Heinzmann, D., Berge, C., & Wolbers, M. (2020). A pragmatic adaptive enrichment design for selecting the right target population for cancer immunotherapies. Pharmaceutical Statistics.
Nguyen, C. L., Oh, L. J., Wong, E., Wei, J., & Chilov, M. (2018). Anti-vascular endothelial growth factor for neovascular age-related macular degeneration: a meta-analysis of randomized controlled trials. BMC Ophthalmology, 18(1), 130-144.
Ondra, T., Jobjörnsson, S., Beckman, R. A., Burman, C.-F., König, F., Stallard, N., & Posch, M. (2017). Optimized adaptive enrichment designs. Statistical Methods in Medical Research, 0(0), 1-16.
O'Quigley, J., Pepe, M., & Fisher, L. (1990). Continual reassessment method: A practical design for phase I clinical trial in cancer. Biometrics, 46, 33-48.
O'Quigley, J., & Shen, L. (1996). Continual reassessment method: A likelihood approach. Biometrics, 52,673-684.
Parsons, N., Friede, T., Todd, S., Marquezd E. V., Chataway J., Nicholas R., Stallard N. (2012). An R package for implementing simulations for seamless phase II/III clinical trials using early outcomes for treatment selection. Computational Statistics and Data Analysis 56, 1150-1160.
Posch, M., Bauer, P. (1999). Adaptive two-satge designs and the conditional error function. Biometrical Journal, 41, 689-696.
Posch, M., Koenig, F., Branson, M., Brannatch, W., Dunger-Baldauf, C., & Bauer, P. (2005). Testing and estimation in flexible group sequential designs with adaptive treatment selection. Statistics in Medicine, 24, 3697-3714.
Proschan, M. A., Hunsberger, S. A. (1995). Designed extension of studies based on conditional power. Biometrics, 51, 1315-1324.
Proschan, M. A. (2005). Two-stage sample size re-estimation based on a nuisance parameter: a review. Journal of Biopharmaceutical Statistics, 15, 539-574.
Rosenberger, W. F., Stallard, N., Ivanova, A., Harper, C. N., & Ricks, M. L. (2001). Optimal adaptive designs for binary response trials. Biometrics, 57, 909-913.
Rosenfeld, P. J., Brown, D. M., Heier, J. S., Boyer, D. S., Kaiser, P. K., Chung, C. Y., & Kim, R. Y., Group ftMS. (2006). Ranibizumab for Neovascular age-related macular degeneration. N Engl J Med. 355(14), 1419-31.
Sampson, A. R., & Sill, M. W. (2005). Drop-the-loser design: normal case (with discussions). Biometrical Journal, 47, 257-281.
Sarkar, S. K., & Chang, C.-K. (1997). The Simes Method for Multiple Hypothesis Testing with Positively Dependent Test Statistics. Journal of the American Statistical Association, 92(440), 1601-1608.
Schauwvlieghe, AM, Dijkman G, Hooymans JM, Verbraak FD, Hoyng CB, Dijkgraaf MG, Peto T, Vingerling JR, Schlingemann RO. (2016). Comparing the Effectiveness of Bevacizumab to Ranibizumab in Patients with Exudative Age-Related Macular Degeneration. The BRAMD Study. PLoS One, 11(5), e0153052.
Schmidli, H., Bretz, F., Racine, A., & Maurer, W. (2006). Confirmatory Seamless Phase II/III Clinical Trials with Hypotheses Selection at Interim: Applications and Practical Considerations. Biometrical Journal, 48(4), 635-643.
Shi, Q., Pavey, E. S., & Carter, R. E. (2012). Bonferroni-based correction factor for multiple, correlated endpoints. Pharmaceutical Statistics, 11(4), 300-309.
Shih, W. J. (2006). Group sequential, sample size re-estimation and two-stage adaptive designs in clinical trials: a comparison. Statistics in Medicine, 25, 933-941.
Šidák, Z. (1967). Rectangular Confidence Regions for the Means of Multivariate Normal Distributions. Journal of the American Statistical Association, 62(318), 626-633.
Simes, R. J. (1986). An Improved Bonferroni Procedure for Multiple Tests of Significance. Biometrika, 73(3), 751-754.
Subramanian, M. L., Abedi, G., Ness, S., Ahmed, E., Fenberg, M., Daly, M. K., Feinberg, E. B. (2010). Bevacizumab vs ranibizumab for age-related macular degeneration: 1-year outcomes of a prospective, double-masked randomised clinical trial. Eye, 24(11), 1708-1715.
Tano, Y. & Ohji, M. (2010). EXTEND-I: safety and efficacy of ranibizumab in Japanese patients with subfoveal choroidal neovascularization secondary to age-related macular degeneration. Acta Ophthalmol, 88, 309-316.
Wang, S. K., & Tsiatis, A. A. (1987). Approximately Optimal One-Parameter Boundaries for Group Sequential Trials. Biometrics, 43(1), 193-199.
Wang, S.-J., James Hung, H. M., & O’Neill, R. T. (2009). Adaptive patient enrichment designs in therapeutic trials. Biometrical Journal, 51(2), 358-374.
Wassmer, G., & Brannath, W. (2016). Group Sequential and Confirmatory Adaptive Designs in Clinical Trials. Springer Series in Pharmaceutical Statistics.
Whitehead J. (1997). Bayesian decision procedures with application to dose-finding studies. International Journal of Pharmaceutical Medicine, 11, 201-208.
Woodcock J. (2005). FDA introduction comments: clinical studies design and evaluation issues. Clinical Trials, 2, 273-275.
Zhang, W., Sargent, D. J., & Mandrekar, S. (2006). An adaptive dose-finding design incorporating both toxicity and efficacy. Statistics in Medicine, 25(14), 2365-2383.
Zhao, J., Li, X., Tang, S., Xu, G., Xu, X., Zhang, F., & Nieweg, A. (2014). EXTEND II: An Open-Label Phase III Multicentre Study to Evaluate Efficacy and Safety of Ranibizumab in Chinese Patients with Subfoveal Choroidal Neovascularization Secondary to Age-Related Macular Degeneration. BioDrugs, 28(6), 527-536.