跳到主要內容

簡易檢索 / 詳目顯示

研究生: 李之福
Jhih-Fu Lee
論文名稱: 二維接地式三角形網格開發及矩陣係數驗證與半導體元件模擬
2D Grounded Triangle Element and Matrix Coefficient Verification and Its Applications to Semiconductor Device Simulation
指導教授: 蔡曜聰
Yao-Tsung Tsai
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 62
中文關鍵詞: 矩陣係數驗證二維三角形網格半導體元件模擬接地式非接地式脊背式電路
外文關鍵詞: Matrix Coefficient Verification, 2D Triangle Element, Semiconductor Device Simulation, Grounded, Bridged, Spine Circuit
相關次數: 點閱:18下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文的主要目是討論二維三角形網格的開發與矩陣係數驗證的重要性,以矩陣係數法為基礎驗證我們所架構的電路模型,並以我們設計的程式去模擬各種類的半導體元件特性。透過對矩陣係數的驗證來確保程式運算時的準確性,再以兩種不同的運算方法來探討同一個運算模型,分別為接地式與非接地式矩陣係數驗證,藉由此方法能夠提高程式運算的精準度。而我們論文中皆採取重心法來驗證三角形網格模型,而此方法好處在於能夠對任意三角形進行驗證,保證程式可符合任意情況。最後,我們以此為出發點模擬出電阻、PN二極體、BJT或其餘特殊半導體元件等模型的電路特性,模擬其特性曲線並與物理意義相互對照,以確保程式的真偽性。


    The main purpose of this thesis is to discuss the importance of the development of 2D triangle element and matrix coefficient verification. Based on the matrix coefficient method, we will verify the circuit model that we have constructed,and use our designed program to simulate various types of semiconductor devices characteristics. Through the verification of the matrix coefficients to ensure the accuracy of the formula calculation, two different calculation methods are used to explore the same calculation model, namely the grounded and the bridged matrix coefficient verification. In our thesis, the center of gravity method is used to verify the triangle mesh model. The advantage of this method is that it can verify any triangle and ensure that the program can satisfy any situation. Finally, we use this triangle model as a starting point to simulate the circuit characteristics of devices such as resistors, PN diodes, BJTs or other special semiconductor devices, simulate their characteristic curves and compare them with physical significance to ensure the authenticity of our program.

    摘要……………………………………………………………………………………i Abstract………………………………………………………………………………..ii 誌謝…………………………………………………………………………………...iii 目錄…………………………………………………………………………………...iv 圖目錄…………………………………………………………………………………v 表目錄………………………………………………………………………………..vii 第一章 簡介………………………………………………………………………..…1 第二章 電路版矩陣係數驗證………………………………………………………..3 2.1 雙迴圈電路模擬…………………………………………………………….3 2.2非接地式矩陣係數驗證……………………………………………………..4 2.3 接地式矩陣係數驗證……………………………………………………….7 第三章 二維三角形矩陣係數驗證…………………………………………………11 3.1 三角形等效電路之矩陣系數推導……………………………...…………11 3.2 非接地式二維三角形矩陣係數驗證……………………………………...19 3.3 接地式二維三角形矩陣係數驗證………………………………………...29 3.4 非接地式與接地式之比較……………………………………………...…32 第四章 二維半導體元件之應用……………………………………………………35 4.1 二維PN二極體電路特性模擬……………………………………………35 4.2 二維BJT結構分析及其特性曲線………………………………………..39 4.3 脊背凸出物對電阻的影響模擬…………………………………………...44 第五章 結論…………………………………………………………………………46 參考資料……………………………………………………………………………..47

    [1]W. G. Feng,” Newton-Raphson method of elastic viscoelastic finite element analysis”, M.S. Thesis,Institute of ME, National Chiao Tung University, Taiwan,Republic of China,1984.
    [2]T. Z. Huang, ”Finding internal vector from the axis method in arbitrary triangle element for 2-D semiconductor device simulation”, M. S. Thesis, Institute of EE, Nation Central University, Taiwan, Republic of China, 2018.
    [3]Y. C. Lai,” 1D Matrix Coefficient Verification And Semiconductor Device Simulation”, M. S. Thesis, Institute of EE, Nation Central University, Taiwan, Republic of China, 2020.
    [4]P. Feldmann , R.A. Rohrer, “Proof of the number of independent Kirchhoff equations in an electrical circuit” ,AT&T Bell Lab., Murray Hill, NJ, USA, 1991.
    [5]Q. Liu, S. Sutar and A. Seabaugh, “Tunnel diode/transistor differential comparator”, Troy, NY ,USA, 2005.
    [6]R. L. Boylestad and L. Nashelsky, Electronic Devices and Circuit Theory, Prentice Hall, ninth edition, 2005.
    [7]T. W. Hsin, ”Potential-Based Modeling of Two Dimensional Workspace Using Several Source Distributions”, M. S. Thesis, Institute of ME,National Chiao Tung University,Taiwan,Republic of China,1993.
    [8]P. Y. Chang, ”Development of point-added square element and its applications to 2-D semiconductor device simulation”, M. S. Thesis, Institute of EE, Nation Central University, Taiwan, Republic of China, 2016.
    [9]S. Y. Li, ”Development of four-in-one regular triangle element and its applications to 2D semiconductor device simulation” Nation Central University, Taiwan, Republic of China, 2016.
    [10]R. A. Jabr, M. Hamad and Y. M. Mohanna, “Newton-Raphson solution of Poisson's equation in a pn diode”, Int. J. Electrical Eng. Educ,pp.27-29, Jan. 2007.
    [11]D.A. Neamen, Semiconductor Physics and device 3^{rd}ed. McGraw-Hill Companies Inc.,New Work, 2003.
    [12]T. Y. Chen,” Derivation and Verification of Electric-Field Equation in Low-high-doping Cylindrical PN Junction”, M. S. Thesis, Institute of EE, Nation Central University, Taiwan, Republic of China, 2020.
    [13]Y. Y. Li,” Finding internal vector from the Taylor series in tetrahadron element for 3D semiconductor device simulation”, M. S. Thesis, Institute of EE, Nation Central University, Taiwan, Republic of China, 2019.
    [14]H. Y. Chen,” Finding internal vector from the Taylor series in arbitrary triangle element for 2D semiconductor device simulation”, M. S. Thesis, Institute of EE, Nation Central University, Taiwan, Republic of China, 2019.
    [15]J. Y. Wu,” 2D matrix coefficient verification and semiconductor device simulation”, M. S. Thesis, Institute of EE, Nation Central University, Taiwan, Republic of China, 2020.
    [16]Y. C. Lin,” Breakdown simulation of a spherical PN junction in cylindrical coordinates”, M. S. Thesis, Institute of EE, Nation Central University, Taiwan, Republic of China, 2012.
    [17]M. Marrero-Martín, J. García, B. González and A. Hernández, "Circuit models for PN integrated varactors," IEEE Trans, Palma de Mallorca, Spain, pp. 1-4, 2011.
    [18]Z. A. S. and S. N. A., "Modelling of NPN Bipolar Junction Transistor Characteristics Using Gummel Plot Technique, ”IEEE Trans, Liverpool, UK, pp. 396-400, 2010.

    QR CODE
    :::