| 研究生: |
紀克彥 Ko-Yen Chi |
|---|---|
| 論文名稱: |
顆粒床過濾器濾材粉塵振動篩分之研究 |
| 指導教授: |
蕭述三
Shu-San Hsiau |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 66 |
| 中文關鍵詞: | 分離 、振動篩分 、再生 、篩分速率 、顆粒床過濾器 |
| 外文關鍵詞: | sieving rate, vibrating sieve, segregation, regeneration, granular bed filter |
| 相關次數: | 點閱:10 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
以傳統氣送分離方式處理沾塵濾材循環再生系統,其缺點最嚴重者包括濾材容易破碎及粉塵分離不完全,因而以振動篩分方式將粉塵與過濾床質分離,是一項良好的解決方案。本研究目的為設計此一振動篩分系統,可為高溫過濾器循環再生系統所使用。我們先以分批篩分的研究,得到能夠有效分離濾材與相關粉塵之振動條件,進而在相同振動條件下改變篩網孔徑大小,獲得較佳的振動條件與篩網孔徑等參數。另外,更進一步設計一套振動篩分輸送裝置運用在顆粒床過濾器上,將分批篩分等參數運用在此連續式的篩分系統上。研究結果顯示,此系統能有效分離濾材與粉塵,並不會造成濾材在輸送過程中破碎。
In a regeneration of filter granular system, the mainly disadvantages of sand/fly ash segregation by using traditional pneumatic transportation are sand broken and incomplete segregation. However, using vibrating screen to segregate sand and fly ash is a good method. The purpose of this study is to design a vibrating screen system, which can be applied into the regeneration of filter granular system in high temperature. First, the batch vibrating screen experiments are carried out to explore the optimum vibrating conditions which can separate sand and fly ash efficiently. The influence of screen aperture size on the screen efficiency and screen rate are also investigated in the batch screen experiments. Moreover, the results of optimum vibrating conditions from the batch screen experiments are applied into the continuous vibrating screen system. We add the continuous vibrating screen into the granular filter bed. The result demonstrate that the vibrating screen system can segregate sand and fly ash efficiently with less sand broken.
1. Cicero, D. C., Dennis, R. A., Geiling D. W. and Schmidt, D. K., 1994, “Hot-Gas Cleanup for Coal-Based Gas Turbines,” ASME Mechanical Engineering, Vol. 116, pp. 70-75.
2. Zevenhoven, C. A. P., Andries, K. R. G., Hein, K. R. G. and Scarlett, B, 1993, “High Temperature Gas Cleaning for PFBC Using a Moving Granular Bed Filter,” in Gas Cleaning at High Temperatures, edited by R. Clift and J. P. K. Seville, Blackie Academic & Professional, pp. 400-418.
3. Andries, J., Scarlett, B., Bernard, J. G., Zevenhoven, C. A. P., van de Leur, R. H. M., Ennis, B., de Hann, P. H., Hogervorst, A. C. R., and Nikolic, M., 1987, “Closed Loop Controlled Integrated Hot Gas Clean Up,” Final Report EC Contract EN3F-0028-NL(GDF), Delft University of Technology.
4. Ishikawa, K, Kawamata N. and Kamei K., 1993, “Development of a Simultaneous Sulfur and Dust Removel Process for IGCC Power Generation System,” in Gas Cleaning at High Temperatures, edited by R. Clift and J.P.K. Seville, Blackie Academic & Professional, pp. 419-435.
5. Doyle, III, F. J., Jackson, R., and Ginestra, J. G., 1986, “The Phenomena of Pinning in an Annular Moving Bed Reactor with Crossflow of Gas,” Chemical Engineering Science, Vol. 41, pp. 1485-1495.
6. Tsubaki, J. and Chi T., 1988, “Gas Filtration in Granular Moving Beds - An Experimental Study,” Canadian J. of Chemical Engineering, Vol. 66, pp. 271-275.
7. Macias-Machin, A., Cuellar, J., Estevez, A. and Jaraiz, E., 1992, “Simple Design of a Crossflow Moving Bed Heat Exchanger-Filter,” Filtration & Separation, March/April, pp. 155-161.
8. Song, X., Wang, Z., Jin Y. and Gong M., 1993, “Investigations on Hydrodynamics of Radial Flow Moving Bed Reactors,” Chemical Engineering Technology, Vol. 16, pp. 383-388.
9. Ghadiri, M., Seville, J. P. K. and Clift, R., 1993, “Fluidised Bed Filtration of Gases at High Temperatures,” Trans. ICHemE, Vol. 71, Part A, pp. 371-381.
10. 魏維新, 1997, 「環境污染學」, 合記圖書出版社, pp. 181~236
11. 呂維明、戴怡德, 1998,「粉粒體粒徑量測技術」, 高立圖書有限公司, pp. 44-66.
12. Li, J., Webb C., Pandiella S. S., Campbell G. M., 2003, “Discrete Particle Motion on Sieve?A Numerical Study Using the DEM Simulation,” Powder Technology, Vol. 133, pp. 190-202.
13. Grozubinsky V., Efim S., Lin I. J., 1998, “Efficiency of Solid Particle Screening As A Funcion of Screen Slot Size, Particle Size, and Duration of Screening?The theoretical Approach,” Int. J. Miner. Process, Vol. 52, pp. 261-272.
14. Abou-chakra H., Tuzun U., Bridle I., Leaper M., 2003, “Aeeseeing the potential of a fine powder to segregate using laser diffraction and sieve particle size measuring techniques,” Advanced Powder Technology, Vol. 14, PP. 167-176.
15. Warren L. Mc Cabe, Julian C. S., Harriot P., 1976, “Unit Operations of Chemical Engineering”,東華書局, pp. 1198-1196.
16. 三輪茂雄、日高重助, 1984, 「粉體工學」, 復漢出版社, pp. 43-65.
17. Barker, G. C. and Mehta, A., 1993, “Size Segregation Mechanisms,” Nature, Vol. 364, pp. 486-487.
18. Bock, U., Schonert, K., 1999, “Charge Motion Model for Vibration Mills with High Excitation,” Powder Technology, Vol. 105, pp. 311-320.
19. Jiang, X., Vakakis, A. F., 2003, “Dual Mode Vibration Isolation Based on Non-Linear Mode Localization,” International Journal of Non-Linear Mechanics, Vol. 37, pp. 837-850.
20. Macdonald, H. G., 2002, “Separation of the Contributions of Aerodynamic and Structural Damping in Vibrations of Inclined Cables,” Journal of Wind Engineering and Industrial Aerodynamics, Vol. 90, pp. 19-39.
21. Ypma, A., Leshem, A., Duin, P. W., 2002, “Blind Separation of
Rotating Machine Sources: Bilinear Forms and Convolutive Mixtures,” Neurocomputing, Vol. 49, pp. 349-368.
22. Fernandes, H. C., Arenzon, J. J., Levin, Y., and Sellitto, M., 2003, “A Nonlinear Diffusion Model for Granular Segregation,” Physica, Vol. 327, Part A, pp. 94-98.