跳到主要內容

簡易檢索 / 詳目顯示

研究生: 楊素容
Su-jung Yang
論文名稱: 遠端操控攝影機內方位與外方位參數率定之方法
Calibration of Interior and Exterior Orientation Parameters for a PTZ Camera
指導教授: 陳繼藩
Chi-farn Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
畢業學年度: 97
語文別: 中文
論文頁數: 90
中文關鍵詞: 外方位參數率定內方位參數遠端操控攝影機
外文關鍵詞: Exterior Orientation Parameters, Interior Orientation Parameters, Calibration, PTZ camera
相關次數: 點閱:17下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於遠端操控攝影機具有水平旋轉、傾斜、放大/縮小(Pan/Tilt/Zoom)的功能而被廣泛的應用。為了使遠端操控攝影機能更精確的進行監測與量測等應用,本研究提出一種率定遠端操控攝影機內方位與外方位參數的方法。本研究之率定分為兩部分:(1)由於遠端操控攝影機有縮放刻度(Zoom)的功能,考慮遠端操控攝影機在進行放大/縮小的功能時,其內方位參數也會跟著改變,因此在不同縮放刻度下率定遠端操控攝影機的內方位參數,在此內方位參數包括透鏡畸變差與像主點位置。爾後利用不同刻度下內方位參數率定的成果建立縮放刻度與內方位參數的關係式;(2)本研究考慮使用者是無法得知遠端操控攝影機內部幾何構造的詳細配置情形,不假設遠端操控攝影機內部的幾何構造,以兩旋轉軸(Pan/Tilt)當作變數,在不同旋轉角度改變下率定遠端操控攝影機的外方位參數(姿態與位置參數),進而建立外方位參數與各個旋轉角度間的關係。由於遠端操控攝影機多使用於室外的大範圍追蹤與監視等應用,因此本研究利用一坐標轉換的方法,將率定結果轉換至室外系統,以便於往後的應用。結果顯示本研究之率定方法能增進遠端操控攝影機在量測上的應用。


    In recent years, PTZ (Pan/Tilt/Zoom) camera is a promising surveillance system because it has much larger view by pan and tilt rotation and can see more detail of object and large area by zoom actions. In order to improve the geometric accuracy of PTZ camera in this promising surveillance system, we should calibrate the camera.
    In this study, we develop a procedure based on the well-known collinearity equations. There are two major steps involved in the calibration procedures: (1) Because the interior orientation parameters will vary with the movement of the zoom, this invention develops a polynomial function to calibrate the interior orientation parameters at different zoom scales. (2) Because the geometric structure on the inside of PTZ camera is usually an unknown to the users, the exterior orientation parameters will be influenced by the unknown structure. This study develops a series of variations of pan and tilt actions to calibrate the influence on the exterior orientation parameters. The
    calibration results of IOP and EOP are used in outdoor through a transformation between the outdoor system and digitizer. The EOP surface can apply to the outdoor system. The calibration results indicate that the geometric
    accuracy of PTZ camera can be improved after calibrating both interior and exterior orientation parameters.

    第一章 前言 ....................................................................................................... 1 1.1 研究背景及目的 ................................................................................... 1 1.2 文獻回顧 ............................................................................................... 2 1.2.1. 內方位參數 ............................................................................... 2 1.2.2. 外方位參數 ............................................................................... 3 1.3 研究內容與論文架構 ........................................................................... 6 第二章 實驗資料 ............................................................................................. 10 2.1 遠端操控攝影機 ............................................................................. 10 2.2 點圖板(率定坐標系統) .................................................................. 11 2.3 正射化航照影像(室外坐標系統) .................................................. 13 第三章 研究方法 ............................................................................................. 15 3.1 自動辨識像點系統 ......................................................................... 15 31.1 自動化辨識像點編號 ............................................................. 17 31.2 自動化辨識像點位置 ............................................................. 21 31.3 影像扭曲之糾正 ..................................................................... 23 3.2 內方位參數率定 ............................................................................. 24 3.2.1 率定不同縮放刻度的內方位參數 ......................................... 25 IV 3.2.2 建立縮放刻度與內方位參數的關係式 ................................. 27 3.3 外方位參數率定 ............................................................................. 27 3.3.1 率定不同旋轉角度下的外方位參數 ..................................... 28 3.3.2 建立旋轉角度與外方位參數所組成的曲面......................... 29 3.4 七參數坐標轉換 ............................................................................. 30 第四章 實驗成果與分析 ................................................................................. 35 4.1 自動辨識系統之成果 ............................................................. 35 4.2 內方位率定成果 ..................................................................... 42 4.3 外方位率定成果 ..................................................................... 49 4.4 七參數坐標轉換成果 ............................................................. 58 4.4.1 定量測試 ................................................................................. 61 4.4.2 定性測試 ................................................................................. 69 第五章 結論與建議 ......................................................................................... 72 5.1 結論 ......................................................................................... 72 5.2 建議 ......................................................................................... 75

    [1]. 何維信,1995。航空攝影測量學,國立編譯館主編,大中國圖書公司,
    台北。
    [2]. 何維信,1988。「數位攝影機之率定問題」,行政院國家科會委員會專
    題研究計畫成果報告。
    [3]. 陳志銘,2004。「利用環場及PTZ 攝影機建構室內環境監控系統作臉
    部辨識」,碩士論文,中央大學資訊工程研究所。
    [4]. 劉虹妤、曾義星、王聖鐸,2001。「數位相機檢定之自動化」,航測及
    遙測學刊,第六卷,第三期,23-35。
    [5]. 賴丙全,2007。「利用多攝影機進行移動物三維定位及追蹤」,碩士論
    文,中央大學土木工程研究所。
    [6]. Barreto, J. P., P. Peixoto, J. Batista, and H. Araujo, 1999. Tracking multiple
    objects in 3D, Proceedings of IEEE/RSJ International Conference on
    Intelligent Robots and Systems (IROS''99).
    [7]. Bas, E. K. and J. D. Crisman, 1997. An easy to install camera calibration for
    traffic monitoring, in Proc. IEEE Conf. on Intelligent Transportation
    Systems, pp. 362-366.
    77
    [8]. Basu, A. and K. Ravi, 1997. Active camera calibration using pan, tilt and
    roll, IEEE Transactions on Systems, Man and Cybernetics, Part B
    (Cybernetics), vol. 27, pp. 559-66.
    [9]. Black, J. and T. Ellis., 2006. Multi Camera Image Tracking, Image and
    Vision Computing, Vol. 24, pp. 1256-1267.
    [10]. Chen, I.-H. and S.-J. Wang, 2007. An Efficient Approach for the
    Calibration of Multiple PTZ Cameras, IEEE Transactions on Automation
    Science and Engineering, Vol. 4, No. 2, pp.1816-1825.
    [11]. Collins R. T. and Y. Tsin, 1999, Calibration of an outdoor active
    camera system, Proceedings of IEEE Computer Society Conference on
    Computer Vision and Pattern Recognition.
    [12]. Davis, J. and X. Chen, 2003. Calibrating pan-tilt cameras in wide-area
    surveillance networks, Proceedings of the Ninth IEEE International
    Conference on Computer Vision.
    [13]. Fraser, C. S.,1982. On the Use of Nonmetric Cameras in Analytical
    Close-Range Photogrammetry, Candian Surveyor, Vol.36. No. 11,
    pp.1757-1766.
    [14]. Fry, S., M. Bichsel, P. Muller, and D. Robert, 2000. Tracking of flying
    insects using pan-tilt cameras, Journal of Neuroscience Methods, vol. 101,
    pp. 59-67.
    78
    [15]. Fryer, J. G. and D. C. Brown, 1986, Lens Distortion for Cloce-Rang
    Photogrammetry, Photogrammetric Engineering and Remoted Sensing, Vol.
    52, No. 1,pp.51-58.
    [16]. Huttunen, S. and J. Heikkila, 2006. An Active Head Tracking System
    for Distance Education and Videoconferencing Applications, Proceedings of
    the IEEE International Conference on Video and Signal Based Surveillance.
    [17]. Lei, B., and L. Q. Xu, 2006. Real-Time Outdoor Video Surveillance
    with Robust Foreground Extraction and Object Tracking via Multi-State
    Transition Management, Pattern Recognition Letters ,27 (15) :1816-1825.
    [18]. Sinha, S.N. and M. Pollefeys, 2006. Pan–tilt–zoom camera calibration
    and high-resolution mosaic generation, Computer Vision and Image
    Understanding Vol. 103(3), pp. 170–183.
    [19]. Wolf, P. R. and B. A. Dewitt, 2000. Elements of Photogrammetry: with
    Applications in GIS, 3nd. McGraw-hill.
    [20]. Wolf, P. R. and C. D. Ghilani, 1997. Adjustment Computations:
    Statistics and Least Squares in Surveying and GIS, 3nd. John Wiley & Sons,
    New York.
    [21]. Woo, D. C. and D. W. Capson, 2000. 3D visual tracking using a
    network of low-cost pan/tilt cameras, Proceedings of Canadian Conference
    on Electrical and Computer Engineering Conference.
    79
    [22]. Zhang , Z., 2004. Camera calibration with one-dimensional objects,
    IEEE Trans. Pattern Anal. Mach. Intell. Vol. 26, No. 7, pp. 892–899.

    QR CODE
    :::