跳到主要內容

簡易檢索 / 詳目顯示

研究生: 王士銘
Shih-Ming Wang
論文名稱: 基於深度神經網路之雙足機器人系統建模
System Modeling of Biped Robot with Deep Neural Network
指導教授: 曹嘉文
Chia-Wen Tsao
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2022
畢業學年度: 111
語文別: 中文
論文頁數: 65
中文關鍵詞: 雙足機器人深度神經網路監督式學習科列斯基分解
外文關鍵詞: Biped Robot, Deep Neural Network, Supervised Learning, Cholesky-decompostion
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文將結合雙足機器人與機器學習,使用機器學習當中的監督式學習(Supervised Learning)方法為基礎,實現一種新創的雙足機器人系統建模方法。相較於傳統的解析方法,本方法因在其運算上的速度優勢,可望能夠提升機器人相關研究的運算效率。本論文主要討論一種通過深度神經網路(Deep Neural Network) 近似科列斯基分解形式(Cholesky-decompostion)雙足機器人系統的質量矩陣(Mass Matrix)的方法。在本論文中,針對一架在單足支撐階段具有5自由度的雙足機器人,基於Euler–Lagrange equation,建立其機器人系統在動態步行中的動力學模型,並利用解析方式推導其在單足支撐階段(Single Support Phase)的質量矩陣。其後利用所推導之解析質量矩陣訓練一個深度神經網路模型映射機器人系統的廣義座標與機器人系統的科列斯基分解形式質量矩陣。在經過 32 小時 50 分鐘的訓練後,能夠獲得一個在驗證階段的近似機器人系統之質量矩陣時有低於 5%的誤差的深度神經網路模型。為證明了此方法的優越性,本論文比較了三種由機器人在單足支撐階段的質量矩陣透過系統拘束方程式求得機器人在碰撞階段的拘束衝量的方法的計算速度。在拘束方程式中使用此種方法近似的質量矩陣進行運算,比使用解析質量矩陣快了5.375 毫秒。同時透過在實際機器人步態軌跡上的驗證,證明了此方法的實用性。


    This thesis investigated a method that uses a deep neural network to encode the biped robot system. In detail, a supervised learning model is trained to approximate the mass matrix of the biped robot system in Cholesky-decomposed form. This method is expected to have higher computational efficiency than traditional system modeling methods. This thesis discusses a biped robot system with 5 degrees of freedom during the single support phase of walking. The ground truth of the supervised learning task is the biped robot system’s analytical mass matrix, derived from the Euler–Lagrange equation. A deep neural network is trained to map the generalized coordinates of the system to the mass matrix in Cholesky-decomposed form with reference to the analytical mass matrix. The training result shows that the neural network accurately encodes the biped robot system's mass matrix with an approximation error of less than 5% during the testing stage after 32 hours and 50 minutes of training. The discussion compares three ways to get the constraint impulse during the impact phase of bipedal walking via mass matrix. The comparative experiment result shows that computing with the Cholesky-decomposed mass matrix encoded by the deep neural network is 5.375 milliseconds faster than computing with the analytical mass matrix. This thesis also demonstrated the practicality of this method by verifying its approximation error on actual robot gait trajectories.

    摘要i Abstract ii 誌謝iii 目錄iv 使用符號與定義viii 一、緒論1 1.1 引言........................................................................ 1 1.2 研究動機.................................................................. 1 1.3 研究背景.................................................................. 4 1.3.1 人形機器人之動作規劃....................................... 4 1.3.2 雙足機器人之數學建模....................................... 7 1.3.3 人工智慧於人形機器人之應用.............................. 8 1.4 研究目標與貢獻......................................................... 10 1.5 章節說明.................................................................. 10 二、機器人架構12 2.1 雙足機器人機構設計與配置.......................................... 12 2.1.1 雙足機器人足部機構設計與配置........................... 12 2.2 雙足機器人硬體設計與配置.......................................... 14 2.2.1 控制系統設計與配置.......................................... 14 2.2.2 馬達設計與配置................................................ 14 2.2.3 遙控模組設計與配置.......................................... 16 2.2.4 電源設計與配置................................................ 16 三、機器人數學建模17 3.1 雙足機器人之步態規劃................................................ 17 3.2 單足支撐階段動力學模型............................................. 19 3.3 碰撞階段動力學分析................................................... 23 四、機器人深度學習建模27 4.1 以神經網路近似科列斯基分解形式質量矩陣..................... 28 4.2 機器學習與深度神經網路............................................. 29 4.3 訓練資料集............................................................... 30 4.4 成本函數.................................................................. 31 4.5 模型評價方法............................................................ 32 4.6 訓練指引.................................................................. 33 五、實驗結果與討論35 5.1 近似實驗結果............................................................ 35 5.2 近似質量矩陣之運算效率驗證....................................... 38 5.3 在雙足機器人實際步態上的驗證.................................... 40 六、總結44 6.1 未來展望.................................................................. 44 參考文獻46

    [1] I. Kato, S. Ohteru, H. Kobayashi, K. Shirai, and A. Uchiyama, “Information-power
    machine with senses and limbs,” pp. 11–24, 1974.
    [2] Y. Sakagami, R. Watanabe, C. Aoyama, S. Matsunaga, N. Higaki, and K. Fujimura,
    “The intelligent asimo: System overview and integration,” in Proceedings of IEEE/
    RSJ International Conference on Intelligent Robots and Systems, 2002, pp. 2478–
    2483.
    [3] G. Endo, J. Nakanishi, J. Morimoto, and G. Cheng, “Experimental studies of a
    neural oscillator for biped locomotion with qrio,” in Proceedings of the IEEE International
    Conference on Robotics and Automation, 2005, pp. 596–602.
    [4] Y. Nakanishi, Y. Asano, T. Kozuki, et al., “Design concept of detail musculoskeletal
    humanoid “kenshiro"-toward a real human body musculoskeletal simulator,” in
    Proceedings of 12th IEEE-RAS International Conference on Humanoid Robots,
    2012, pp. 1–6.
    [5] S. Zimmermann, R. Poranne, and S. Coros, “Go fetch!-dynamic grasps using boston
    dynamics spot with external robotic arm,” in Proceedings of IEEE International
    Conference on Robotics and Automation, 2021, pp. 4488–4494.
    [6] G. Ficht and S. Behnke, “Bipedal humanoid hardware design: A technology review,”
    Current Robotics Reports, vol. 2, no. 2, pp. 201–210, 2021.
    [7] T. Sugihara, Y. Nakamura, and H. Inoue, “Real-time humanoid motion generation
    through zmp manipulation based on inverted pendulum control,” in Proceedings of
    IEEE International Conference on Robotics and Automation, 2002, pp. 1404–1409.
    [8] X. Bajrami, A. Dermaku, A. Shala, and R. Likaj, “Kinematics and dynamics modelling
    of the biped robot,” IFAC Proceedings Volumes, vol. 46, no. 8, pp. 69–73,
    2013.
    [9] M. W. Spong, S. Hutchinson, M. Vidyasagar, et al., Robot modeling and control.
    Wiley New York, 2006, vol. 3.
    [10] C. Hernández-Santos, E. Rodriguez-Leal, R. Soto, and J. Gordillo, “Kinematics and
    dynamics of a new 16 dof humanoid biped robot with active toe joint,” International
    Journal of Advanced Robotic Systems, vol. 9, no. 5, pp. 190–190, 2012.
    [11] Q. Huang, K. Yokoi, S. Kajita, et al., “Planning walking patterns for a biped robot,”
    IEEE Transactions on Robotics and Automation, vol. 17, no. 3, pp. 280–289, 2001.
    [12] H. Yussof, M. Ohka, M. Yamano, and Y. Nasu, “Analysis of human-inspired biped
    walk characteristics in a prototype humanoid robot for improvement of walking
    speed,” in Proceedings of IEEE Second Asia International Conference on Modelling
    & Simulation, 2008, pp. 564–569.
    [13] M. Vukobratović and J. Stepanenko, “On the stability of anthropomorphic systems,”
    Mathematical biosciences, vol. 15, no. 1-2, pp. 1–37, 1972.
    [14] S. Kajita, O. Matsumoto, and M. Saigo, “Real-time 3d walking pattern generation
    for a biped robot with telescopic legs,” in Proceedings of IEEE International
    Conference on Robotics and Automation, 2001, pp. 2299–2306.
    [15] H.-o. Lim, Y. Kaneshima, and A. Takanishi, “Online walking pattern generation
    for biped humanoid robot with trunk,” in Proceedings of IEEE International Conference
    on Robotics and Automation, 2002, pp. 3111–3116.
    [16] K. Nishiwaki and S. Kagami, “Online walking control system for humanoids with
    short cycle pattern generation,” The International Journal of Robotics Research,
    vol. 28, no. 6, pp. 729–742, 2009.
    [17] S. Kajita, F. Kanehiro, K. Kaneko, et al., “Biped walking pattern generation by
    using preview control of zero-moment point,” in Proceedings of IEEE International
    Conference on Robotics and Automation, 2003.
    [18] T. Sato, S. Sakaino, and K. Ohnishi, “Real-time walking trajectory generation
    method with three-mass models at constant body height for three-dimensional
    biped robots,” IEEE Transactions on Industrial Electronics, vol. 58, no. 2, pp. 376–
    383, 2010.
    [19] S. Shimmyo, T. Sato, and K. Ohnishi, “Biped walking pattern generation by using
    preview control based on three-mass model,” IEEE Transactions on Industrial
    Electronics, vol. 60, no. 11, pp. 5137–5147, 2012.
    [20] T. Katayama, T. Ohki, T. Inoue, and T. Kato, “Design of an optimal controller
    for a discrete-time system subject to previewable demand,” International Journal
    of Control, vol. 41, no. 3, pp. 677–699, 1985.
    [21] T. Kwon and J. K. Hodgins, “Control systems for human running using an inverted
    pendulum model and a reference motion capture sequence.,” in Proceedings
    of Symposium on Computer Animation, 2010, pp. 129–138.
    [22] S. Coros, P. Beaudoin, and M. Van de Panne, “Generalized biped walking control,”
    ACM Transactions On Graphics, vol. 29, no. 4, pp. 1–9, 2010.
    [23] R. Grzeszczuk, D. Terzopoulos, and G. Hinton, “Neuroanimator: Fast neural network
    emulation and control of physics-based models,” in Proceedings of the 25th
    annual conference on Computer graphics and interactive techniques, 1998, pp. 9–20.
    [24] S. Kajita, F. Kanehiro, K. Kaneko, K. Yokoi, and H. Hirukawa, “The 3d linear
    inverted pendulum mode: A simple modeling for a biped walking pattern generation,”
    in Proceedings of IEEE/RSJ International Conference on Intelligent Robots
    and Systems, 2001, pp. 239–246.
    [25] C.-L. Shih and W. A. Gruver, “Control of a biped robot in the double-support
    phase,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 22, no. 4,
    pp. 729–735, 1992.
    [26] H. Hemami and R. Farnsworth, “Postural and gait stability of a planar five link
    biped by simulation,” IEEE Transactions on Automatic Control, vol. 22, no. 3,
    pp. 452–458, 1977.
    [27] C. A. D. Bezerra and D. E. Zampieri, “Biped robots: The state of art,” in Proceedings
    of International Symposium on History of Machines and Mechanisms, 2004,
    pp. 371–389.
    [28] V. Kurtz, P. M. Wensing, and H. Lin, “Approximate simulation for template-based
    whole-body control,” IEEE Robotics and Automation Letters, vol. 6, no. 2, pp. 558–
    565, 2020.
    [29] X. B. Peng, G. Berseth, K. Yin, and M. Van De Panne, “Deeploco: Dynamic locomotion
    skills using hierarchical deep reinforcement learning,” ACM Transactions
    on Graphics, vol. 36, no. 4, pp. 1–13, 2017.
    [30] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust region policy
    optimization,” in Proceedings of International Conference on Machine Learning,
    2015, pp. 1889–1897.
    [31] Z. Wang, V. Bapst, N. Heess, et al., “Sample efficient actor-critic with experience
    replay,” arXiv:1611.01224, 2016.
    [32] I. Mordatch, K. Lowrey, and E. Todorov, “Ensemble-cio: Full-body dynamic motion
    planning that transfers to physical humanoids,” in Proceedings of IEEE/RSJ
    International Conference on Intelligent Robots and Systems, 2015, pp. 5307–5314.
    [33] S. Auddy, S. Magg, and S. Wermter, “Hierarchical control for bipedal locomotion
    using central pattern generators and neural networks,” in Proceedings of Joint
    IEEE 9th International Conference on Development and Learning and Epigenetic
    Robotics, 2019, pp. 13–18.
    [34] S. Greydanus, M. Dzamba, and J. Yosinski, “Hamiltonian neural networks,” Advances
    in Neural Information Processing Systems, vol. 32, 2019.
    [35] M. Lutter, C. Ritter, and J. Peters, “Deep lagrangian networks: Using physics as
    model prior for deep learning,” arXiv:1907.04490, 2019.
    [36] K. Xu, D. Z. Huang, and E. Darve, “Learning constitutive relations using symmetric
    positive definite neural networks,” Journal of Computational Physics, vol. 428,
    pp. 110 072–110 072, 2021.
    [37] G. Sutanto, A. Wang, Y. Lin, et al., “Encoding physical constraints in differentiable
    Newton-Euler algorithm,” in Proceedings of Machine Learning Research,
    2020, pp. 804–813.
    [38] M. Lutter, K. Listmann, and J. Peters, “Deep lagrangian networks for end-toend
    learning of energy-based control for under-actuated systems,” in Proceedings
    of IEEE/RSJ International Conference on Intelligent Robots and Systems, 2019,
    pp. 7718–7725.
    [39] S.-M. Wang and R. Kikuuwe, “Neural Encoding of Mass Matrices of Articulated
    Rigid-body Systems in Cholesky-Decomposed Form,” in Proceedings of IEEE International
    Conference on Industrial Technology, 2022.
    [40] T. Ando, T. Watari, and R. Kikuuwe, “Master-slave bipedal walking and semiautomatic
    standing up of humanoid robots,” in Proceedings of IEEE/SICE International
    Symposium on System Integration, 2020, pp. 360–365.
    [41] I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,” arXiv:1711.05101,
    2017.
    [42] A. Paszke, S. Gross, S. Chintala, et al., “Automatic differentiation in pytorch,” in
    Proceedings of 31st Conference on Neural Information Processing Systems, 2017.
    [43] N. S. Keskar and R. Socher, “Improving generalization performance by switching
    from adam to sgd,” arXiv:1712.07628, 2017.
    [44] M. D. Zeiler, “Adadelta: An adaptive learning rate method,” arXiv:1212.5701, 2012.
    [45] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv:
    1412.6980, 2014.
    [46] C. R. Harris, K. J. Millman, S. J. van der Walt, et al., “Array programming with
    NumPy,” Nature, vol. 585, no. 7825, pp. 357–362, Sep. 2020.

    QR CODE
    :::