跳到主要內容

簡易檢索 / 詳目顯示

研究生: 周憶珊
Yi-Shan Chou
論文名稱: 利用超音波噴塗技術製備混合有機陽離子鈣鈦礦 太陽能電池
Fabrication of Mixed-Organic-Cation Perovskite Solar Cells by Ultrasonic Spray Technique
指導教授: 劉振良
Cheng-Liang Liu
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程與材料工程學系
Department of Chemical & Materials Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 123
中文關鍵詞: 鈣鈦礦太陽能電池混摻材料超音波噴塗
外文關鍵詞: Perovskite, Solar Cell, Mixed Materials, Ultrasonic Spray Coating
相關次數: 點閱:19下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 有機-無機混合之具有ABX3晶體結構的鈣鈦礦材料,被認為太陽能電池下一個世代最有前景的材料之一。太陽能電池的吸光材料,在紅外光區與近紅光區具有較寬較強的吸收帶,因此將元件材料吸收範圍擴展到近紅外光區,將可提高鈣鈦礦太陽能電池的光伏性能。
      本研究通過使用混合有機陽離子的鈣鈦礦材料,在固定鈣鈦礦結構為APbI3晶體結構下,透過改變A位的有機陽離子材料,使用混合有機陽離子Formamidinium(HN=CHNH3+,FA+)和Methylammonium(CH3NH3+,MA+)。可以透過調整混合陽離子間的比例,調整鈣鈦礦材料的能隙,進而提升鈣鈦礦材料在長波長區的吸收,同時藉由混合的有機陽離子鈣鈦礦材料,能夠提高鈣鈦礦薄膜的晶體結構穩定性,以及太陽能電池的環境穩定性。實驗上使用簡單、成本低廉以及高產出之超音波噴塗技術,製備平面異質結構的鈣鈦礦太陽能電池,經由優化最佳噴塗參數製備之元件,得到具有結構穩定和環境穩定性的鈣鈦礦太陽能元件,達到最高的光電轉換效率為15.57 %。


    Halide perovskite materials with an ABX3 crystal structure, have recently become the subject of extreme interest for their use in photovoltaics and other optoelectronics. An important target for the further improvement of the performance of perovskite-based photovoltaics is to extend their optical-absorption onset further into the red to enhance solar-light harvesting. This goal can be reached by using a mixture of formamidinium (HN=CHNH3+, FA+) and methylammonium (CH3NH3+, MA+) cations in the A position of the APbI3 perovskite structure. By changing the ratio of MAI and FAI cations, it has been shown that the bandgap can be tuned, and that these mixed compositions have favorable properties in terms of structural stability in the black phase and performance. Herein we combine a simple, high throughput ultrasonic spray coating process to fabricate the planar hetero-junction perovskite solar cell, with a device architecture FTO/NiOx/FA0.25MA0.75PbI3/C60/BCP/Ag. The device shows the highest power conversion efficiency (PCE) of 15.57 %.

    摘要 i Abstract ii 謝誌 iii 目錄 iv 圖目錄 viii 表目錄 xiii 第一章 緒論 1 1-1 前言 1 1-2 太陽能電池之分類及歷史發展 3 1-3 太陽能電池之工作原理及特性 7 第二章 文獻探討 10 2-1 鈣鈦礦太陽能電池 10 2-1-1 鈣鈦礦發展簡述 10 2-1-2 鈣鈦礦材料介紹 12 2-1-2-1 鈣鈦礦材料優點 13 2-1-2-2 鈣鈦礦材料離子的調控 15 2-1-3 電池元件結構介紹 19 2-1-3-1 介觀結構 20 2-1-3-2 平面異質結構 23 2-1-4 鈣鈦礦薄膜製備方法 25 2-1-4-1 一步驟前驅物沉積法 27 2-1-4-2 二步驟順序沉積法 29 2-1-4-3 雙源共蒸鍍沉積法 30 2-1-4-4 蒸氣輔助溶液加工法 31 2-1-4-5 其他溶液製程 31 2-1-5 以噴塗法製作鈣鈦礦太陽能電池 33 2-1-5-1 一步法噴塗製作鈣鈦礦薄膜 34 2-1-5-2 兩步法噴塗製作鈣鈦礦薄膜 36 2-2 實驗動機 38 第三章 實驗與研究方法 39 3-1 實驗藥品及溶劑 39 3-2 實驗儀器 40 3-2-1 元件製作儀器 40 3-2-2 元件測量儀器 41 3-2-3 超音波霧化噴塗系統 42 3-3 實驗步驟及方法 44 3-3-1 鈣鈦礦前驅物溶液配置 44 3-3-1-1 不同有機陽離子比例之溶液配置 44 3-3-1-2 不同碘化鉛比例之溶液配置 45 3-3-1-3 不同前驅物溶液體積比之溶液配置 46 3-3-2 鈣鈦礦太陽能電池元件製作 47 3-3-2-1 以有機PEDOT:PSS作為電洞傳輸層元件製作 47 3-3-2-2 以無機NiOx作為電洞傳輸層元件製作 53 3-4 鈣鈦礦太陽能電池量測方式 59 第四章 結果與討論 60 4-1 以有機PEDOT:PSS作為電洞傳輸層元件 60 4-1-1 混合有機陽離子比例影響 60 4-1-2 碘化鉛與有機陽離子比例影響 66 4-1-3 鈣鈦礦溶劑比例影響 72 4-2 以無機NiOx作為電洞傳輸層元件鈣鈦礦層 78 4-2-1 混合有機陽離子比例影響 78 4-2-2 碘化鉛與有機陽離子比例影響 86 第五章 結論 93 第六章 參考文獻 95 A附錄 102 A-1. 超音波噴塗技術於高分子電致變色元件之應用 102

    [1] Shah, Y. T., Thermal Energy: Sources, Recovery, and Applications. CRC Press: 2018.
    [2] Conibeer, G., Materials today 2007, 10, 42-50.
    [3] Chilvery, A. K.; Batra, A. K.; Yang, B.; Xiao, K.; Guggilla, P.; Aggarwal, M. D.; Surabhi, R.; Lal, R. B.; Currie, J. R.; Penn, B. G., J. Photonics Energy 2015, 5, 057402.
    [4] Zhao, J.; Wang, A.; Green, M. A.; Ferrazza, F., Appl. Phys. Lett. 1998, 73, 1991-1993.
    [5] Schultz, O.; Glunz, S.; Willeke, G., Prog. Photovoltaics 2004, 12, 553-558.
    [6] Yan, B.; Yue, G.; Xu, X.; Yang, J.; Guha, S., Physica Status Solidi (a) 2010, 207, 671-677.
    [7] Green, M. A.; Hishikawa, Y.; Warta, W.; Dunlop, E. D.; Levi, D. H.; Hohl-Ebinger, J.; Ho-Baillie, A. W., Prog. Photovoltaics 2017, 23, 805-812.
    [8] Elfiky, D.; Yamaguchi, M.; Sasaki, T.; Takamoto, T.; Morioka, C.; Imaizumi, M.; Ohshima, T.; Sato, S.-i.; Elnawawy, M.; Eldesuky, T., Jpn. J. Appl. Phys. 2010, 49, 121202.
    [9] García, I.; Rey-Stolle, I.; Galiana, B.; Algora, C., Appl. Phys. Lett. 2009, 94, 053509.
    [10] Britt, J.; Ferekides, C., Appl. Phys. Lett. 1993, 62, 2851-2852.
    [11] Repins, I.; Contreras, M. A.; Egaas, B.; DeHart, C.; Scharf, J.; Perkins, C. L.; To, B.; Noufi, R., Prog. Photovoltaics 2008, 16, 235-239.
    [12] Powalla, M.; Voorwinden, G.; Hariskos, D.; Jackson, P.; Kniese, R., Thin Solid Films 2009, 517, 2111-2114.
    [13] Cheng, Y. J.; Yang, S. H.; Hsu, C. S., Chem. Rev. 2009, 109, 5868-5923.
    [14] Xu, T. T.; Qiao, Q. Q., Energy Environ. Sci. 2011, 4, 2700-2720.
    [15] Mazzio, K. A.; Luscombe, C. K., Chem. Soc. Rev. 2015, 44, 78-90.
    [16] NREL, Best Research-Cell Efficiency. https://www.nrel.gov/pv/assets/images/efficiency-chart.png, 2018.
    [17] Liu, M.; Johnston, M. B.; Snaith, H. J., Nature 2013, 501, 395-398.
    [18] Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T., J. Am. Chem. Soc. 2009, 131, 6050-6051.
    [19] Im, J.-H.; Lee, C.-R.; Lee, J.-W.; Park, S.-W.; Park, N.-G., Nanoscale 2011, 3, 4088-4093.
    [20] Kim, H.-S.; Lee, C.-R.; Im, J.-H.; Lee, K.-B.; Moehl, T.; Marchioro, A.; Moon, S.-J.; Humphry-Baker, R.; Yum, J.-H.; Moser, J. E.; Grätzel, M.; Park, N.-G., Sci. Rep. 2012, 2, 591.
    [21] Lee, M. M.; Teuscher, J.; Miyasaka, T.; Murakami, T. N.; Snaith, H. J., Science 2012, 338, 643-647.
    [22] Ball, J. M.; Lee, M. M.; Hey, A.; Snaith, H. J., Energy Environ. Sci. 2013, 6, 1739-1743.
    [23] Burschka, J.; Pellet, N.; Moon, S.-J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M. K.; Graetzel, M., Nature 2013, 499, 316-320.
    [24] Colella, S.; Mosconi, E.; Fedeli, P.; Listorti, A.; Gazza, F.; Orlandi, F.; Ferro, P.; Besagni, T.; Rizzo, A.; Calestani, G.; Gigli, G.; De Angelis, F.; Mosca, R., Chem. Mater. 2013, 25, 4613-4618.
    [25] Docampo, P.; Ball, J. M.; Darwich, M.; Eperon, G. E.; Snaith, H. J., Nat. Commun. 2013, 4, 2761.
    [26] Qiu, J.; Qiu, Y.; Yan, K.; Zhong, M.; Mu, C.; Yan, H.; Yang, S., Nanoscale 2013, 5, 3245-3248.
    [27] Marchioro, A.; Teuscher, J.; Friedrich, D.; Kunst, M.; van de Krol, R.; Moehl, T.; Graetzel, M.; Moser, J.-E., Nat. Photonics 2014, 8, 250-255.
    [28] Wang, Q.; Shao, Y.; Dong, Q.; Xiao, Z.; Yuan, Y.; Huang, J., Energy Environ. Sci. 2014, 7, 2359-2365.
    [29] Xiao, Z.; Bi, C.; Shao, Y.; Dong, Q.; Wang, Q.; Yuan, Y.; Wang, C.; Gao, Y.; Huang, J., Energy Environ. Sci. 2014, 7, 2619-2623.
    [30] Bi, C.; Wang, Q.; Shao, Y.; Yuan, Y.; Xiao, Z.; Huang, J., Nat. Commun. 2015, 6, 7747.

    [31] Lian, J.; Wang, Q.; Yuan, Y.; Shao, Y.; Huang, J., J. Mater. Chem. A 2015, 3, 9146-9151.
    [32] Kim, H.-S.; Im, S. H.; Park, N.-G., J. Phys. Chem. C 2014, 118, 5615-5625.
    [33] Stoumpos, C. C.; Malliakas, C. D.; Kanatzidis, M. G., Inorg. Chem. 2013, 52, 9019-9038.
    [34] Stranks, S. D.; Eperon, G. E.; Grancini, G.; Menelaou, C.; Alcocer, M. J. P.; Leijtens, T.; Herz, L. M.; Petrozza, A.; Snaith, H. J., Science 2013, 342, 341-344.
    [35] Cai, B.; Xing, Y.; Yang, Z.; Zhang, W.-H.; Qiu, J., Energy Environ. Sci. 2013, 6, 1480-1485.
    [36] Xing, G. C.; Mathews, N.; Lim, S. S.; Yantara, N.; Liu, X. F.; Sabba, D.; Gratzel, M.; Mhaisalkar, S.; Sum, T. C., Nat. Mater. 2014, 13, 476-480.
    [37] Eperon, G. E.; Stranks, S. D.; Menelaou, C.; Johnston, M. B.; Herz, L. M.; Snaith, H. J., Energy Environ. Sci. 2014, 7, 982-988.
    [38] Werner, J.; Nogay, G.; Sahli, F.; Yang, T. C.-J.; Bräuninger, M.; Christmann, G.; Walter, A.; Kamino, B. A.; Fiala, P.; Löper, P., ACS Energy Letters 2018, 3, 742-747.
    [39] Bhalla, A.; Guo, R.; Roy, R., Mater. Res. Innovations 2000, 4, 3-26.
    [40] Chen, Q.; De Marco, N.; Yang, Y. M.; Song, T.-B.; Chen, C.-C.; Zhao, H.; Hong, Z.; Zhou, H.; Yang, Y., Nano Today 2015, 10, 355-396.
    [41] Kieslich, G.; Sun, S.; Cheetham, A. K., Chem. Sci. 2014, 5, 4712-4715.
    [42] Unger, E.; Kegelmann, L.; Suchan, K.; Sörell, D.; Korte, L.; Albrecht, S., J. Mater. Chem. A 2017, 5, 11401-11409.
    [43] Lv, S.; Pang, S.; Zhou, Y.; Padture, N. P.; Hu, H.; Wang, L.; Zhou, X.; Zhu, H.; Zhang, L.; Huang, C., Phys. Chem. Chem. Phys. 2014, 16, 19206-19211.
    [44] Pellet, N.; Gao, P.; Gregori, G.; Yang, T. Y.; Nazeeruddin, M. K.; Maier, J.; Grätzel, M., Angew. Chem., Int. Ed. 2014, 126, 3215-3221.
    [45] Gao, P.; Grätzel, M.; Nazeeruddin, M. K., Energy Environ. Sci. 2014, 7, 2448-2463.

    [46] Song, Z.; Watthage, S. C.; Phillips, A. B.; Heben, M. J., J. Photonics Energy 2016, 6, 022001.
    [47] Mali, S. S.; Hong, C. K., Nanoscale 2016, 8, 10528-10540.
    [48] Kumar, M. H.; Yantara, N.; Dharani, S.; Graetzel, M.; Mhaisalkar, S.; Boix, P. P.; Mathews, N., Chem. Commun. 2013, 49, 11089-11091.
    [49] Son, D.-Y.; Im, J.-H.; Kim, H.-S.; Park, N.-G., J. Phys. Chem. C 2014, 118, 16567-16573.
    [50] Park, J. H.; Seo, J.; Park, S.; Shin, S. S.; Kim, Y. C.; Jeon, N. J.; Shin, H. W.; Ahn, T. K.; Noh, J. H.; Yoon, S. C., Adv. Mater. 2015, 27, 4013-4019.
    [51] Dirksen, J. A.; Duval, K.; Ring, T. A., Sens. Actuators, B 2001, 80, 106-115.
    [52] Nandy, S.; Saha, B.; Mitra, M. K.; Chattopadhyay, K., J. Mater. Sci. 2007, 42, 5766-5772.
    [53] Berry, J. J.; Widjonarko, N. E.; Bailey, B. A.; Sigdel, A. K.; Ginley, D. S.; Olson, D. C., IEEE J. Sel. Top. Quantum Electron. 2010, 16, 1649-1655.
    [54] Irwin, M. D.; Buchholz, D. B.; Hains, A. W.; Chang, R. P.; Marks, T. J., Proc. Natl. Acad. Sci. 2008, 105, 2783-2787.
    [55] Chen, W.; Wu, Y.; Liu, J.; Qin, C.; Yang, X.; Islam, A.; Cheng, Y.-B.; Han, L., Energy Environ. Sci. 2015, 8, 629-640.
    [56] Wang, K.-C.; Jeng, J.-Y.; Shen, P.-S.; Chang, Y.-C.; Diau, E. W.-G.; Tsai, C.-H.; Chao, T.-Y.; Hsu, H.-C.; Lin, P.-Y.; Chen, P., Sci. Rep. 2014, 4, 4756.
    [57] Nie, W.; Tsai, H.; Asadpour, R.; Blancon, J.-C.; Neukirch, A. J.; Gupta, G.; Crochet, J. J.; Chhowalla, M.; Tretiak, S.; Alam, M. A., Science 2015, 347, 522-525.
    [58] Labban, A. E.; Chen, H.; Kirkus, M.; Barbe, J.; Del Gobbo, S.; Neophytou, M.; McCulloch, I.; Eid, J., Adv. Energy Mater. 2016, 6, 1502101.
    [59] You, J.; Meng, L.; Song, T.-B.; Guo, T.-F.; Yang, Y. M.; Chang, W.-H.; Hong, Z.; Chen, H.; Zhou, H.; Chen, Q., Nat. Nanotechnol. 2016, 11, 75.
    [60] Kim, J. H.; Liang, P.-W.; Williams, S. T.; Cho, N.; Chueh, C.-C.; Glaz, M. S.; Ginger, D. S.; Jen, A. K. Y., Adv. Mater. 2015, 27, 695-701.
    [61] Jeon, N. J.; Noh, J. H.; Kim, Y. C.; Yang, W. S.; Ryu, S.; Seok, S. I., Nat. Mater. 2014, 13, 897-903.
    [62] Conings, B.; Baeten, L.; De Dobbelaere, C.; D'Haen, J.; Manca, J.; Boyen, H. G., Adv. Mater. 2014, 26, 2041-2046.
    [63] Seo, J.; Park, S.; Kim, Y. C.; Jeon, N. J.; Noh, J. H.; Yoon, S. C.; Sang, S. I., Energy Environ. Sci. 2014, 7, 2642-2646.
    [64] Miyamae, H.; Numahata, Y.; Nagata, M., Chem. Lett. 1980, 663-664.
    [65] Kim, H.-B.; Choi, H.; Jeong, J.; Kim, S.; Walker, B.; Song, S.; Kim, J. Y., Nanoscale 2014, 6, 6679-6683.
    [66] Yang, F.; Kamarudin, M. A.; Zhang, P.; Kapil, G.; Ma, T.; Hayase, S., ChemSusChem 2018, https://doi.org/10.1002/cssc.201800625.
    [67] Im, J.-H.; Jang, I.-H.; Pellet, N.; Grätzel, M.; Park, N.-G., Nature nanotechnology 2014, 9, 927-932.
    [68] Song, T.-B.; Chen, Q.; Zhou, H.; Jiang, C.; Wang, H.-H.; Yang, Y.; Liu, Y.; You, J.; Yang, Y., J. Mater. Chem. A 2015, 3, 9032-9050.
    [69] Chen, Q.; Zhou, H. P.; Hong, Z. R.; Luo, S.; Duan, H. S.; Wang, H. H.; Liu, Y. S.; Li, G.; Yang, Y., J. Am. Chem. Soc. 2014, 136, 622-625.
    [70] Wu, Y. Z.; Islam, A.; Yang, X. D.; Qin, C. J.; Liu, J.; Zhang, K.; Peng, W. Q.; Han, L. Y., Energy Environ. Sci. 2014, 7, 2934-2938.
    [71] Xiao, Z. G.; Dong, Q. F.; Bi, C.; Shao, Y. C.; Yuan, Y. B.; Huang, J. S., Adv. Mater. 2014, 26, 6503-6509.
    [72] Habibi, M.; Rahimzadeh, A.; Bennouna, I.; Eslamian, M., Coatings 2017, 7, 42.
    [73] Deng, Y.; Peng, E.; Shao, Y.; Xiao, Z.; Dong, Q.; Huang, J., Energy Environ. Sci. 2015, 8, 1544-1550.
    [74] Barrows, A. T.; Pearson, A. J.; Kwak, C. K.; Dunbar, A. D.; Buckley, A. R.; Lidzey, D. G., Energy Environ. Sci. 2014, 7, 2944-2950.
    [75] Das, S.; Yang, B.; Gu, G.; Joshi, P. C.; Ivanov, I. N.; Rouleau, C. M.; Aytug, T.; Geohegan, D. B.; Xiao, K., ACS Photonics 2015, 2, 680-686.

    [76] Ramesh, M.; Boopathi, K. M.; Huang, T.-Y.; Huang, Y.-C.; Tsao, C.-S.; Chu, C.-W., ACS Appl. Mater. Interfaces 2015, 7, 2359-2366.
    [77] Chang, W. C.; Lan, D. H.; Lee, K. M.; Wang, X. F.; Liu, C. L., ChemSusChem 2017, 10, 1405-1412.
    [78] Hwang, K.; Jung, Y. S.; Heo, Y. J.; Scholes, F. H.; Watkins, S. E.; Subbiah, J.; Jones, D. J.; Kim, D. Y.; Vak, D., Adv. Mater. 2015, 27, 1241-1247.
    [79] Schmidt, T. M.; Larsen-Olsen, T. T.; Carlé, J. E.; Angmo, D.; Krebs, F. C., Adv. Energy Mater. 2015, 5, 1500569
    [80] Li, X.; Bi, D.; Yi, C.; Décoppet, J.-D.; Luo, J.; Zakeeruddin, S. M.; Hagfeldt, A.; Grätzel, M., Science 2016, 353, 58-62.
    [81] Heo, J. H.; Lee, M. H.; Jang, M. H.; Im, S. H., J. Mater. Chem. A 2016, 4, 17636-17642.
    [82] Bishop, J. E.; Routledge, T. J.; Lidzey, D. G., J. Phys. Chem. Lett. 2018, 9, 1977-1984.
    [83] Abdollahi Nejand, B.; Gharibzadeh, S.; Ahmadi, V.; Shahverdi, H. R., J. Phys. Chem. C 2016, 120, 2520-2528.
    [84] Gamliel, S.; Dymshits, A.; Aharon, S.; Terkieltaub, E.; Etgar, L., J. Phys. Chem. C 2015, 119, 19722-19728.
    [85] Ishihara, H.; Chen, W.; Chen, Y. C.; Sarang, S.; De Marco, N.; Lin, O.; Ghosh, S.; Tung, V., Adv. Mater. Interfaces 2016, 3, 1500762.
    [86] Han, S.; Kim, H.; Lee, S.; Kim, C., ACS Appl. Mater. Interfaces 2018, 10, 7281-7288.
    [87] Lin, P.-Y.; Chen, Y.-Y.; Guo, T.-F.; Fu, Y.-S.; Lai, L.-C.; Lee, C.-K., RSC Adv. 2017, 7, 10985-10991.
    [88] Bi, Z.; Liang, Z.; Xu, X.; Chai, Z.; Jin, H.; Xu, D.; Li, J.; Li, M.; Xu, G., Sol. Energy Mater. Sol. Cells 2017, 162, 13-20.
    [89] Mohamad, D. K.; Griffin, J.; Bracher, C.; Barrows, A. T.; Lidzey, D. G., Adv. Energy Mater. 2016, 6, 1600994.
    [90] Ishihara, H.; Sarang, S.; Chen, Y.-C.; Lin, O.; Phummirat, P.; Thung, L.; Hernandez, J.; Ghosh, S.; Tung, V., J. Mater. Chem. A 2016, 4, 6989-6997.
    [91] Tait, J.; Manghooli, S.; Qiu, W.; Rakocevic, L.; Kootstra, L.; Jaysankar, M.; de la Huerta, C. M.; Paetzold, U. W.; Gehlhaar, R.; Cheyns, D., J. Mater. Chem. A 2016, 4, 3792-3797.
    [92] Bishop, J. E.; Mohamad, D. K.; Wong-Stringer, M.; Smith, A.; Lidzey, D. G., Sci. Rep. 2017, 7, 7962.
    [93] Hong, S. C.; Lee, G.; Ha, K.; Yoon, J.; Ahn, N.; Cho, W.; Park, M.; Choi, M., ACS Appl. Mater. Interfaces 2017, 9, 7879-7884.
    [94] Xia, X.; Li, H.; Wu, W.; Li, Y.; Fei, D.; Gao, C.; Liu, X., ACS Appl. Mater. Interfaces 2015, 7, 16907-16912.
    [95] Li, F.; Bao, C.; Zhu, W.; Lv, B.; Tu, W.; Yu, T.; Yang, J.; Zhou, X.; Wang, Y.; Wang, X., J. Mater. Chem. A 2016, 4, 11372-11380.
    [96] Boopathi, K. M.; Ramesh, M.; Perumal, P.; Huang, Y.-C.; Tsao, C.-S.; Chen, Y.-F.; Lee, C.-H.; Chu, C.-W., J. Mater. Chem. A 2015, 3, 9257-9263.
    [97] Mohammadian, N.; Alizadeh, A.; Moshaii, A.; Gharibzadeh, S.; Alizadeh, A.; Mohammadpour, R.; Fathi, D., Thin Solid Films 2016, 616, 754-759.
    [98] Lau, C. F. J.; Deng, X.; Ma, Q.; Zheng, J.; Yun, J. S.; Green, M. A.; Huang, S.; Ho-Baillie, A. W., ACS Energy Lett. 2016, 1, 573-577.
    [99] Remeika, M.; Raga, S. R.; Zhang, S.; Qi, Y., J. Mater. Chem. A 2017, 5, 5709-5718.
    [100] Habibi, M.; Ahmadian-Yazdi, M.-R.; Eslamian, M., J. Photonics Energy 2017, 7, 022003.
    [101] Huang, H.; Shi, J.; Zhu, L.; Li, D.; Luo, Y.; Meng, Q., Nano Energy 2016, 27, 352-358.
    [102] Kavadiya, S.; Niedzwiedzki, D. M.; Huang, S.; Biswas, P., Adv. Energy Mater. 2017, 7, 1700210.
    [103] Bag, S.; Deneault, J. R.; Durstock, M. F., Adv. Energy Mater. 2017, 7, 1701151.

    QR CODE
    :::